#region License Information
/* HeuristicLab
* Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using HeuristicLab.Common;
using HeuristicLab.Data;
using HeuristicLab.Encodings.PermutationEncoding;
using HeuristicLab.Problems.TravelingSalesman;
using HeuristicLab.Random;
using Microsoft.VisualStudio.TestTools.UnitTesting;
namespace HeuristicLab.Problems.TravelingSalesman_33.Tests {
///
///This is a test class for TSP move evaluators
///
[TestClass()]
public class TSPMoveEvaluatorTest {
private const int ProblemSize = 10;
private static DoubleMatrix coordinates;
private static DistanceMatrix distances;
private static Permutation tour;
private static MersenneTwister random;
private TestContext testContextInstance;
///
///Gets or sets the test context which provides
///information about and functionality for the current test run.
///
public TestContext TestContext {
get { return testContextInstance; }
set { testContextInstance = value; }
}
[ClassInitialize]
public static void MyClassInitialize(TestContext testContext) {
random = new MersenneTwister();
coordinates = new DoubleMatrix(ProblemSize, 2);
distances = new DistanceMatrix(ProblemSize, ProblemSize);
for (int i = 0; i < ProblemSize; i++) {
coordinates[i, 0] = random.Next(ProblemSize * 10);
coordinates[i, 1] = random.Next(ProblemSize * 10);
}
for (int i = 0; i < ProblemSize - 1; i++) {
for (int j = i + 1; j < ProblemSize; j++) {
distances[i, j] = Math.Round(Math.Sqrt(Math.Pow(coordinates[i, 0] - coordinates[j, 0], 2) + Math.Pow(coordinates[i, 1] - coordinates[j, 1], 2)));
distances[j, i] = distances[i, j];
}
}
tour = new Permutation(PermutationTypes.RelativeUndirected, ProblemSize, random);
}
[TestMethod]
public void InversionMoveEvaluatorTest() {
var evaluator = new TSPRoundedEuclideanPathEvaluator();
var moveEvaluator = new TSPInversionMoveRoundedEuclideanPathEvaluator();
double beforeMatrix = TSPDistanceMatrixEvaluator.Apply(distances, tour);
double beforeCoordinates = TSPCoordinatesPathEvaluator.Apply(evaluator, coordinates, tour);
Assert.IsTrue(beforeMatrix.IsAlmost(beforeCoordinates), "Evaluation differs between using the coordinates and using the distance matrix.");
for (int i = 0; i < 500; i++) {
var move = StochasticInversionSingleMoveGenerator.Apply(tour, random);
double moveMatrix = TSPInversionMovePathEvaluator.EvaluateByDistanceMatrix(tour, move, distances);
double moveCoordinates = TSPInversionMovePathEvaluator.EvaluateByCoordinates(tour, move, coordinates, moveEvaluator);
Assert.IsTrue(moveMatrix.IsAlmost(moveCoordinates), "Evaluation differs between using the coordinates and using the distance matrix.");
string failureString = string.Format(@"Inversion move is calculated with quality {0}, but actual difference is {4}.
The move would invert the tour {1} between values {2} and {3}.", moveMatrix.ToString(), tour.ToString(), tour[move.Index1].ToString(), tour[move.Index2].ToString(), "{0}");
InversionManipulator.Apply(tour, move.Index1, move.Index2);
double afterMatrix = TSPDistanceMatrixEvaluator.Apply(distances, tour);
double afterCoordinates = TSPCoordinatesPathEvaluator.Apply(evaluator, coordinates, tour);
Assert.IsTrue(afterMatrix.IsAlmost(afterCoordinates), "Evaluation differs between using the coordinates and using the distance matrix.");
Assert.IsTrue(moveMatrix.IsAlmost(afterMatrix - beforeMatrix), string.Format(failureString, (afterMatrix - beforeMatrix).ToString()));
beforeMatrix = afterMatrix;
beforeCoordinates = afterCoordinates;
}
}
[TestMethod]
public void TranslocationMoveEvaluatorTest() {
var evaluator = new TSPRoundedEuclideanPathEvaluator();
var moveEvaluator = new TSPTranslocationMoveRoundedEuclideanPathEvaluator();
double beforeMatrix = TSPDistanceMatrixEvaluator.Apply(distances, tour);
double beforeCoordinates = TSPCoordinatesPathEvaluator.Apply(evaluator, coordinates, tour);
Assert.IsTrue(beforeMatrix.IsAlmost(beforeCoordinates), "Evaluation differs between using the coordinates and using the distance matrix.");
for (int i = 0; i < 500; i++) {
var move = StochasticTranslocationSingleMoveGenerator.Apply(tour, random);
double moveMatrix = TSPTranslocationMovePathEvaluator.EvaluateByDistanceMatrix(tour, move, distances);
double moveCoordinates = TSPTranslocationMovePathEvaluator.EvaluateByCoordinates(tour, move, coordinates, moveEvaluator);
Assert.IsTrue(moveMatrix.IsAlmost(moveCoordinates), "Evaluation differs between using the coordinates and using the distance matrix.");
string failureString = string.Format(@"Translocation move is calculated with quality {0}, but actual difference is {5}.
The move would move the segment between {1} and {2} in the tour {3} to the new index {4}.", moveMatrix.ToString(), tour[move.Index1].ToString(), tour[move.Index2].ToString(), tour.ToString(), move.Index3.ToString(), "{0}");
TranslocationManipulator.Apply(tour, move.Index1, move.Index2, move.Index3);
double afterMatrix = TSPDistanceMatrixEvaluator.Apply(distances, tour);
double afterCoordinates = TSPCoordinatesPathEvaluator.Apply(evaluator, coordinates, tour);
Assert.IsTrue(afterMatrix.IsAlmost(afterCoordinates), "Evaluation differs between using the coordinates and using the distance matrix.");
Assert.IsTrue(moveMatrix.IsAlmost(afterMatrix - beforeMatrix), string.Format(failureString, (afterMatrix - beforeMatrix).ToString()));
beforeMatrix = afterMatrix;
beforeCoordinates = afterCoordinates;
}
}
}
}