#region License Information /* HeuristicLab * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Random; namespace HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis_34.Tests { internal class Util { public static void InitTree(ISymbolicExpressionTree tree, MersenneTwister twister, List varNames) { foreach (var node in tree.IterateNodesPostfix()) { if (node is VariableTreeNode) { var varNode = node as VariableTreeNode; varNode.Weight = twister.NextDouble() * 20.0 - 10.0; varNode.VariableName = varNames[twister.Next(varNames.Count)]; } else if (node is ConstantTreeNode) { var constantNode = node as ConstantTreeNode; constantNode.Value = twister.NextDouble() * 20.0 - 10.0; } } } public static ISymbolicExpressionTree[] CreateRandomTrees(MersenneTwister twister, Dataset dataset, ISymbolicExpressionGrammar grammar, int popSize) { return CreateRandomTrees(twister, dataset, grammar, popSize, 1, 200, 3, 3); } public static ISymbolicExpressionTree[] CreateRandomTrees(MersenneTwister twister, Dataset dataset, ISymbolicExpressionGrammar grammar, int popSize, int minSize, int maxSize, int maxFunctionDefinitions, int maxFunctionArguments) { foreach (Variable variableSymbol in grammar.Symbols.OfType()) { variableSymbol.VariableNames = dataset.VariableNames.Skip(1); } ISymbolicExpressionTree[] randomTrees = new ISymbolicExpressionTree[popSize]; for (int i = 0; i < randomTrees.Length; i++) { randomTrees[i] = ProbabilisticTreeCreator.Create(twister, grammar, maxSize, 10); } return randomTrees; } public static Dataset CreateRandomDataset(MersenneTwister twister, int rows, int columns) { double[,] data = new double[rows, columns]; for (int i = 0; i < rows; i++) { for (int j = 0; j < columns; j++) { data[i, j] = twister.NextDouble() * 2.0 - 1.0; } } IEnumerable variableNames = new string[] { "y" }.Concat(Enumerable.Range(0, columns - 1).Select(x => "x" + x.ToString())); Dataset ds = new Dataset(variableNames, data); return ds; } public static double NodesPerSecond(long nNodes, Stopwatch watch) { return nNodes / (watch.ElapsedMilliseconds / 1000.0); } private const int horizon = 10; public static double CalculateEvaluatedNodesPerSec(ISymbolicExpressionTree[] trees, ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter interpreter, Dataset dataset, int repetitions) { interpreter.TargetVariable = dataset.VariableNames.First(); // warm up IEnumerable rows = Enumerable.Range(0, dataset.Rows - horizon); long nNodes = 0; for (int i = 0; i < trees.Length; i++) { nNodes += trees[i].Length * (dataset.Rows - horizon) * horizon; interpreter.GetSymbolicExpressionTreeValues(trees[i], dataset, rows, horizon).Count(); // count needs to evaluate all rows } Stopwatch watch = new Stopwatch(); for (int rep = 0; rep < repetitions; rep++) { watch.Start(); for (int i = 0; i < trees.Length; i++) { interpreter.GetSymbolicExpressionTreeValues(trees[i], dataset, rows, horizon).Count(); // count needs to evaluate all rows } watch.Stop(); } Console.WriteLine("Random tree evaluation performance of " + interpreter.GetType() + ": " + watch.ElapsedMilliseconds + "ms " + Util.NodesPerSecond(nNodes * repetitions, watch) + " nodes/sec"); return Util.NodesPerSecond(nNodes * repetitions, watch); } } }