#region License Information /* HeuristicLab * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; using HeuristicLab.Common; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression { public class SymbolicRegressionSolutionImpactValuesCalculator : SymbolicDataAnalysisSolutionImpactValuesCalculator { public override double CalculateReplacementValue(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable rows) { var regressionModel = (ISymbolicRegressionModel)model; var regressionProblemData = (IRegressionProblemData)problemData; return CalculateReplacementValue(node, regressionModel.SymbolicExpressionTree, regressionModel.Interpreter, regressionProblemData.Dataset, rows); } public override double CalculateImpactValue(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable rows, double originalQuality = double.NaN) { var regressionModel = (ISymbolicRegressionModel)model; var regressionProblemData = (IRegressionProblemData)problemData; var dataset = regressionProblemData.Dataset; var targetValues = dataset.GetDoubleValues(regressionProblemData.TargetVariable, rows); OnlineCalculatorError errorState; if (double.IsNaN(originalQuality)) { var originalValues = regressionModel.GetEstimatedValues(dataset, rows); originalQuality = OnlinePearsonsRSquaredCalculator.Calculate(targetValues, originalValues, out errorState); if (errorState != OnlineCalculatorError.None) originalQuality = 0.0; } var replacementValue = CalculateReplacementValue(regressionModel, node, regressionProblemData, rows); var constantNode = new ConstantTreeNode(new Constant()) { Value = replacementValue }; var cloner = new Cloner(); cloner.RegisterClonedObject(node, constantNode); var tempModel = cloner.Clone(regressionModel); var estimatedValues = tempModel.GetEstimatedValues(dataset, rows); double newQuality = OnlinePearsonsRSquaredCalculator.Calculate(targetValues, estimatedValues, out errorState); if (errorState != OnlineCalculatorError.None) newQuality = 0.0; return originalQuality - newQuality; } } }