#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using HeuristicLab.Common;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
public class SymbolicClassificationSolutionImpactValuesCalculator : SymbolicDataAnalysisSolutionImpactValuesCalculator {
public override double CalculateReplacementValue(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable rows) {
var classificationModel = (ISymbolicClassificationModel)model;
var classificationProblemData = (IClassificationProblemData)problemData;
return CalculateReplacementValue(node, classificationModel.SymbolicExpressionTree, classificationModel.Interpreter, classificationProblemData.Dataset, rows);
}
public override double CalculateImpactValue(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable rows, double originalQuality = double.NaN) {
var classificationModel = (ISymbolicClassificationModel)model;
var classificationProblemData = (IClassificationProblemData)problemData;
var dataset = classificationProblemData.Dataset;
var targetClassValues = dataset.GetDoubleValues(classificationProblemData.TargetVariable, rows);
OnlineCalculatorError errorState;
if (double.IsNaN(originalQuality)) {
var originalClassValues = classificationModel.GetEstimatedClassValues(dataset, rows);
originalQuality = OnlineAccuracyCalculator.Calculate(targetClassValues, originalClassValues, out errorState);
if (errorState != OnlineCalculatorError.None) originalQuality = 0.0;
}
var replacementValue = CalculateReplacementValue(classificationModel, node, classificationProblemData, rows);
var constantNode = new ConstantTreeNode(new Constant()) { Value = replacementValue };
var cloner = new Cloner();
cloner.RegisterClonedObject(node, constantNode);
var tempModel = cloner.Clone(classificationModel);
tempModel.RecalculateModelParameters(classificationProblemData, rows);
var estimatedClassValues = tempModel.GetEstimatedClassValues(dataset, rows);
double newQuality = OnlineAccuracyCalculator.Calculate(targetClassValues, estimatedClassValues, out errorState);
if (errorState != OnlineCalculatorError.None) newQuality = 0.0;
return originalQuality - newQuality;
}
}
}