#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Optimization;
using HeuristicLab.Problems.DataAnalysis.Symbolic;
using Microsoft.VisualStudio.TestTools.UnitTesting;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Tests {
[TestClass()]
public class SymbolicDataAnalysisExpressionTreeSimplifierTest {
[TestMethod]
public void SimplifierAxiomsTest() {
SymbolicExpressionImporter importer = new SymbolicExpressionImporter();
SymbolicDataAnalysisExpressionTreeSimplifier simplifier = new SymbolicDataAnalysisExpressionTreeSimplifier();
SymbolicExpressionTreeStringFormatter formatter = new SymbolicExpressionTreeStringFormatter();
#region single argument arithmetics
{
var actualTree = simplifier.Simplify(importer.Import("(+ 1.0)"));
var expectedTree = importer.Import("1.0");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
var actualTree = simplifier.Simplify(importer.Import("(+ (variable 2.0 a))"));
var expectedTree = importer.Import("(variable 2.0 a)");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
var actualTree = simplifier.Simplify(importer.Import("(- 1.0)"));
var expectedTree = importer.Import("-1.0");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
var actualTree = simplifier.Simplify(importer.Import("(- (variable 2.0 a))"));
var expectedTree = importer.Import("(variable -2.0 a)");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
var actualTree = simplifier.Simplify(importer.Import("(* 2.0)"));
var expectedTree = importer.Import("2.0");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
var actualTree = simplifier.Simplify(importer.Import("(* (variable 2.0 a))"));
var expectedTree = importer.Import("(variable 2.0 a)");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
var actualTree = simplifier.Simplify(importer.Import("(/ 2.0)"));
var expectedTree = importer.Import("0.5");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
var actualTree = simplifier.Simplify(importer.Import("(/ (variable 2.0 a))"));
var expectedTree = importer.Import("(/ 1.0 (variable 2.0 a))");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
#endregion
#region aggregation of constants into factors
{
var actualTree = simplifier.Simplify(importer.Import("(* 2.0 (variable 2.0 a))"));
var expectedTree = importer.Import("(variable 4.0 a)");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
var actualTree = simplifier.Simplify(importer.Import("(/ (variable 2.0 a) 2.0)"));
var expectedTree = importer.Import("(variable 1.0 a)");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
var actualTree = simplifier.Simplify(importer.Import("(/ (variable 2.0 a) (* 2.0 2.0))"));
var expectedTree = importer.Import("(variable 0.5 a)");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
#endregion
#region constant and variable folding
{
var actualTree = simplifier.Simplify(importer.Import("(+ 1.0 2.0)"));
var expectedTree = importer.Import("3.0");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
var actualTree = simplifier.Simplify(importer.Import("(+ (variable 2.0 a) (variable 2.0 a))"));
var expectedTree = importer.Import("(variable 4.0 a)");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
var actualTree = simplifier.Simplify(importer.Import("(- (variable 2.0 a) (variable 1.0 a))"));
var expectedTree = importer.Import("(variable 1.0 a)");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
var actualTree = simplifier.Simplify(importer.Import("(* (variable 2.0 a) (variable 2.0 a))"));
var expectedTree = importer.Import("(* (* (variable 1.0 a) (variable 1.0 a)) 4.0)");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
var actualTree = simplifier.Simplify(importer.Import("(/ (variable 1.0 a) (variable 2.0 a))"));
var expectedTree = importer.Import("0.5");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
#endregion
#region logarithm rules
{
// cancellation
var actualTree = simplifier.Simplify(importer.Import("(log (exp (variable 2.0 a)))"));
var expectedTree = importer.Import("(variable 2.0 a)");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
// must not transform logs in this way as we do not know wether both variables are positive
var actualTree = simplifier.Simplify(importer.Import("(log (* (variable 1.0 a) (variable 1.0 b)))"));
var expectedTree = importer.Import("(log (* (variable 1.0 a) (variable 1.0 b)))");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
// must not transform logs in this way as we do not know wether both variables are positive
var actualTree = simplifier.Simplify(importer.Import("(log (/ (variable 1.0 a) (variable 1.0 b)))"));
var expectedTree = importer.Import("(log (/ (variable 1.0 a) (variable 1.0 b)))");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
#endregion
#region exponentiation rules
{
// cancellation
var actualTree = simplifier.Simplify(importer.Import("(exp (log (variable 2.0 a)))"));
var expectedTree = importer.Import("(variable 2.0 a)");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
// exp transformation
var actualTree = simplifier.Simplify(importer.Import("(exp (+ (variable 2.0 a) (variable 3.0 b)))"));
var expectedTree = importer.Import("(* (exp (variable 2.0 a)) (exp (variable 3.0 b)))");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
// exp transformation
var actualTree = simplifier.Simplify(importer.Import("(exp (- (variable 2.0 a) (variable 3.0 b)))"));
var expectedTree = importer.Import("(* (exp (variable 2.0 a)) (exp (variable -3.0 b)))");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
// exp transformation
var actualTree = simplifier.Simplify(importer.Import("(exp (- (variable 2.0 a) (* (variable 3.0 b) (variable 4.0 c))))"));
var expectedTree = importer.Import("(* (exp (variable 2.0 a)) (exp (* (variable 1.0 b) (variable 1.0 c) -12.0)))");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
// exp transformation
var actualTree = simplifier.Simplify(importer.Import("(exp (- (variable 2.0 a) (* (variable 3.0 b) (cos (variable 4.0 c)))))"));
var expectedTree = importer.Import("(* (exp (variable 2.0 a)) (exp (* (variable 1.0 b) (cos (variable 4.0 c)) -3.0)))");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
#endregion
#region power rules
{
// cancellation
var actualTree = simplifier.Simplify(importer.Import("(pow (variable 2.0 a) 0.0)"));
var expectedTree = importer.Import("1.0");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
// fixed point
var actualTree = simplifier.Simplify(importer.Import("(pow (variable 2.0 a) 1.0)"));
var expectedTree = importer.Import("(variable 2.0 a)");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
// inversion fixed point
var actualTree = simplifier.Simplify(importer.Import("(pow (variable 2.0 a) -1.0)"));
var expectedTree = importer.Import("(/ 1.0 (variable 2.0 a))");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
// inversion
var actualTree = simplifier.Simplify(importer.Import("(pow (variable 2.0 a) -2.0)"));
var expectedTree = importer.Import("(/ 1.0 (pow (variable 2.0 a) 2.0))");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
// constant folding
var actualTree = simplifier.Simplify(importer.Import("(pow 3.0 2.0)"));
var expectedTree = importer.Import("9.0");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
#endregion
#region root rules
{
// cancellation
var actualTree = simplifier.Simplify(importer.Import("(root (variable 2.0 a) 0.0)"));
var expectedTree = importer.Import("1.0");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
// fixed point
var actualTree = simplifier.Simplify(importer.Import("(root (variable 2.0 a) 1.0)"));
var expectedTree = importer.Import("(variable 2.0 a)");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
// inversion fixed point
var actualTree = simplifier.Simplify(importer.Import("(root (variable 2.0 a) -1.0)"));
var expectedTree = importer.Import("(/ 1.0 (variable 2.0 a))");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
// inversion
var actualTree = simplifier.Simplify(importer.Import("(root (variable 2.0 a) -2.0)"));
var expectedTree = importer.Import("(/ 1.0 (root (variable 2.0 a) 2.0))");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
// constant folding
var actualTree = simplifier.Simplify(importer.Import("(root 9.0 2.0)"));
var expectedTree = importer.Import("3.0");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
#endregion
#region boolean operations
{
// always true and
var actualTree = simplifier.Simplify(importer.Import("(and 1.0 2.0)"));
var expectedTree = importer.Import("1.0");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
// always false and
var actualTree = simplifier.Simplify(importer.Import("(and 1.0 -2.0)"));
var expectedTree = importer.Import("-1.0");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
// always true or
var actualTree = simplifier.Simplify(importer.Import("(or -1.0 2.0)"));
var expectedTree = importer.Import("1.0");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
// always false or
var actualTree = simplifier.Simplify(importer.Import("(or -1.0 -2.0)"));
var expectedTree = importer.Import("-1.0");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
// constant not
var actualTree = simplifier.Simplify(importer.Import("(not -2.0)"));
var expectedTree = importer.Import("1.0");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
// constant not
var actualTree = simplifier.Simplify(importer.Import("(not 2.0)"));
var expectedTree = importer.Import("-1.0");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
// constant not
var actualTree = simplifier.Simplify(importer.Import("(not 0.0)"));
var expectedTree = importer.Import("1.0");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
// nested nots
var actualTree = simplifier.Simplify(importer.Import("(not (not 1.0))"));
var expectedTree = importer.Import("1.0");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
// not of non-Boolean argument
var actualTree = simplifier.Simplify(importer.Import("(not (variable 1.0 a))"));
var expectedTree = importer.Import("(not (> (variable 1.0 a) 0.0))");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
// not Boolean argument
var actualTree = simplifier.Simplify(importer.Import("(not (and (> (variable 1.0 a) 0.0) (> (variable 1.0 a) 0.0)))"));
var expectedTree = importer.Import("(not (and (> (variable 1.0 a) 0.0) (> (variable 1.0 a) 0.0)))");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
#endregion
#region conditionals
{
// always false
var actualTree = simplifier.Simplify(importer.Import("(if -1.0 (variable 2.0 a) (variable 3.0 a))"));
var expectedTree = importer.Import("(variable 3.0 a)");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
// always true
var actualTree = simplifier.Simplify(importer.Import("(if 1.0 (variable 2.0 a) (variable 3.0 a))"));
var expectedTree = importer.Import("(variable 2.0 a)");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
// always false (0.0)
var actualTree = simplifier.Simplify(importer.Import("(if 0.0 (variable 2.0 a) (variable 3.0 a))"));
var expectedTree = importer.Import("(variable 3.0 a)");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
// complex constant condition (always false)
var actualTree = simplifier.Simplify(importer.Import("(if (* 1.0 -2.0) (variable 2.0 a) (variable 3.0 a))"));
var expectedTree = importer.Import("(variable 3.0 a)");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
// complex constant condition (always false)
var actualTree = simplifier.Simplify(importer.Import("(if (/ (variable 1.0 a) (variable -2.0 a)) (variable 2.0 a) (variable 3.0 a))"));
var expectedTree = importer.Import("(variable 3.0 a)");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
{
// insertion of relational operator
var actualTree = simplifier.Simplify(importer.Import("(if (variable 1.0 a) (variable 2.0 a) (variable 3.0 a))"));
var expectedTree = importer.Import("(if (> (variable 1.0 a) 0.0) (variable 2.0 a) (variable 3.0 a))");
Assert.AreEqual(formatter.Format(expectedTree), formatter.Format(actualTree));
}
#endregion
}
private void AssertEqualEnumerations(IEnumerable expected, IEnumerable actual) {
var expectedEnumerator = expected.GetEnumerator();
var actualEnumerator = actual.GetEnumerator();
while (expectedEnumerator.MoveNext() & actualEnumerator.MoveNext()) {
Assert.AreEqual(expectedEnumerator.Current, actualEnumerator.Current, Math.Abs(1E-6 * expectedEnumerator.Current));
}
if (expectedEnumerator.MoveNext() | actualEnumerator.MoveNext())
Assert.Fail("Number of elements in enumerations do not match");
}
}
}