#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Operators;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using System;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
///
/// An operator that analyzes the training best symbolic data analysis solution for multi objective symbolic data analysis problems.
///
[Item("SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer", "An operator that analyzes the training best symbolic data analysis solution for multi objective symbolic data analysis problems.")]
[StorableClass]
public abstract class SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer : SymbolicDataAnalysisMultiObjectiveAnalyzer
where T : class, ISymbolicDataAnalysisSolution {
private const string TrainingBestSolutionsParameterName = "Best training solutions";
private const string TrainingBestSolutionQualitiesParameterName = "Best training solution qualities";
#region parameter properties
public ILookupParameter> TrainingBestSolutionsParameter {
get { return (ILookupParameter>)Parameters[TrainingBestSolutionsParameterName]; }
}
public ILookupParameter> TrainingBestSolutionQualitiesParameter {
get { return (ILookupParameter>)Parameters[TrainingBestSolutionQualitiesParameterName]; }
}
#endregion
#region properties
public ItemList TrainingBestSolutions {
get { return TrainingBestSolutionsParameter.ActualValue; }
set { TrainingBestSolutionsParameter.ActualValue = value; }
}
public ItemList TrainingBestSolutionQualities {
get { return TrainingBestSolutionQualitiesParameter.ActualValue; }
set { TrainingBestSolutionQualitiesParameter.ActualValue = value; }
}
#endregion
[StorableConstructor]
protected SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer(bool deserializing) : base(deserializing) { }
protected SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer(SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
public SymbolicDataAnalysisMultiObjectiveTrainingBestSolutionAnalyzer()
: base() {
Parameters.Add(new LookupParameter>(TrainingBestSolutionsParameterName, "The training best (Pareto-optimal) symbolic data analysis solutions."));
Parameters.Add(new LookupParameter>(TrainingBestSolutionQualitiesParameterName, "The qualities of the training best (Pareto-optimal) solutions."));
}
public override IOperation Apply() {
var results = ResultCollection;
// create empty parameter and result values
if (TrainingBestSolutions == null) {
TrainingBestSolutions = new ItemList();
TrainingBestSolutionQualities = new ItemList();
results.Add(new Result(TrainingBestSolutionQualitiesParameter.Name, TrainingBestSolutionQualitiesParameter.Description, TrainingBestSolutionQualities));
results.Add(new Result(TrainingBestSolutionsParameter.Name, TrainingBestSolutionsParameter.Description, TrainingBestSolutions));
}
IList trainingBestQualities = TrainingBestSolutionQualities
.Select(x => x.ToArray())
.ToList();
#region find best trees
IList nonDominatedIndexes = new List();
ISymbolicExpressionTree[] tree = SymbolicExpressionTree.ToArray();
List qualities = Qualities.Select(x => x.ToArray()).ToList();
bool[] maximization = Maximization.ToArray();
List newNonDominatedQualities = new List();
for (int i = 0; i < tree.Length; i++) {
if (IsNonDominated(qualities[i], trainingBestQualities, maximization) &&
IsNonDominated(qualities[i], qualities, maximization)) {
if (!newNonDominatedQualities.Contains(qualities[i], new DoubleArrayComparer())) {
newNonDominatedQualities.Add(qualities[i]);
nonDominatedIndexes.Add(i);
}
}
}
#endregion
#region update Pareto-optimal solution archive
if (nonDominatedIndexes.Count > 0) {
ItemList nonDominatedQualities = new ItemList();
ItemList nonDominatedSolutions = new ItemList();
// add all new non-dominated solutions to the archive
foreach (var index in nonDominatedIndexes) {
T solution = CreateSolution(tree[index], qualities[index]);
nonDominatedSolutions.Add(solution);
nonDominatedQualities.Add(new DoubleArray(qualities[index]));
}
// add old non-dominated solutions only if they are not dominated by one of the new solutions
for (int i = 0; i < trainingBestQualities.Count; i++) {
if (IsNonDominated(trainingBestQualities[i], newNonDominatedQualities, maximization)) {
if (!newNonDominatedQualities.Contains(trainingBestQualities[i], new DoubleArrayComparer())) {
nonDominatedSolutions.Add(TrainingBestSolutions[i]);
nonDominatedQualities.Add(TrainingBestSolutionQualities[i]);
}
}
}
results[TrainingBestSolutionsParameter.Name].Value = nonDominatedSolutions;
results[TrainingBestSolutionQualitiesParameter.Name].Value = nonDominatedQualities;
}
#endregion
return base.Apply();
}
private class DoubleArrayComparer : IEqualityComparer {
public bool Equals(double[] x, double[] y) {
if (y.Length != x.Length) throw new ArgumentException();
for (int i = 0; i < x.Length;i++ ) {
if (!x[i].IsAlmost(y[i])) return false;
}
return true;
}
public int GetHashCode(double[] obj) {
int c = obj.Length;
for (int i = 0; i < obj.Length; i++)
c ^= obj[i].GetHashCode();
return c;
}
}
protected abstract T CreateSolution(ISymbolicExpressionTree bestTree, double[] bestQuality);
private bool IsNonDominated(double[] point, IList points, bool[] maximization) {
foreach (var refPoint in points) {
bool refPointDominatesPoint = true;
for (int i = 0; i < point.Length; i++) {
refPointDominatesPoint &= IsBetterOrEqual(refPoint[i], point[i], maximization[i]);
}
if (refPointDominatesPoint) return false;
}
return true;
}
private bool IsBetterOrEqual(double lhs, double rhs, bool maximization) {
if (maximization) return lhs > rhs;
else return lhs < rhs;
}
}
}