#region License Information /* HeuristicLab * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Problems.DataAnalysis; using Microsoft.VisualStudio.TestTools.UnitTesting; namespace HeuristicLab.Problems.DataAnalysis_3_4.Tests { [TestClass()] public class StatisticCalculatorsTest { private double[,] testData = new double[,] { {5,1,1,1,2,1,3,1,1,2}, {5,4,4,5,7,10,3,2,1,2}, {3,1,1,1,2,2,3,1,1,2}, {6,8,8,1,3,4,3,7,1,2}, {4,1,1,3,2,1,3,1,1,2}, {8,10,10,8,7,10,9,7,1,4}, {1,1,1,1,2,10,3,1,1,2}, {2,1,2,1,2,1,3,1,1,2}, {2,1,1,1,2,1,1,1,5,2}, {4,2,1,1,2,1,2,1,1,2}, {1,1,1,1,1,1,3,1,1,2}, {2,1,1,1,2,1,2,1,1,2}, {5,3,3,3,2,3,4,4,1,4}, {8,7,5,10,7,9,5,5,4,4}, {7,4,6,4,6,1,4,3,1,4}, {4,1,1,1,2,1,2,1,1,2}, {4,1,1,1,2,1,3,1,1,2}, {10,7,7,6,4,10,4,1,2,4}, {6,1,1,1,2,1,3,1,1,2}, {7,3,2,10,5,10,5,4,4,4}, {10,5,5,3,6,7,7,10,1,4} }; [TestMethod] public void CalculateMeanAndVarianceTest() { System.Random random = new System.Random(31415); int n = testData.GetLength(0); int cols = testData.GetLength(1); { for (int col = 0; col < cols; col++) { double scale = random.NextDouble(); IEnumerable x = from rows in Enumerable.Range(0, n) select testData[rows, col] * scale; double[] xs = x.ToArray(); double mean_alglib, variance_alglib; mean_alglib = variance_alglib = 0.0; double tmp = 0; alglib.samplemoments(xs, n, out mean_alglib, out variance_alglib, out tmp, out tmp); var calculator = new OnlineMeanAndVarianceCalculator(); for (int i = 0; i < n; i++) { calculator.Add(xs[i]); } double mean = calculator.Mean; double variance = calculator.Variance; Assert.IsTrue(mean_alglib.IsAlmost(mean)); Assert.IsTrue(variance_alglib.IsAlmost(variance)); } } } [TestMethod] public void CalculatePearsonsRSquaredTest() { System.Random random = new System.Random(31415); int n = testData.GetLength(0); int cols = testData.GetLength(1); for (int c1 = 0; c1 < cols; c1++) { for (int c2 = c1 + 1; c2 < cols; c2++) { { double c1Scale = random.NextDouble() * 1E7; double c2Scale = random.NextDouble() * 1E7; IEnumerable x = from rows in Enumerable.Range(0, n) select testData[rows, c1] * c1Scale; IEnumerable y = from rows in Enumerable.Range(0, n) select testData[rows, c2] * c2Scale; double[] xs = x.ToArray(); double[] ys = y.ToArray(); double r2_alglib = alglib.pearsoncorrelation(xs, ys, n); r2_alglib *= r2_alglib; var r2Calculator = new OnlinePearsonsRSquaredCalculator(); for (int i = 0; i < n; i++) { r2Calculator.Add(xs[i], ys[i]); } double r2 = r2Calculator.RSquared; Assert.IsTrue(r2_alglib.IsAlmost(r2)); } } } } [TestMethod] public void CalculatePearsonsRSquaredOfConstantTest() { System.Random random = new System.Random(31415); int n = 12; int cols = testData.GetLength(1); for (int c1 = 0; c1 < cols; c1++) { double c1Scale = random.NextDouble() * 1E7; IEnumerable x = from rows in Enumerable.Range(0, n) select testData[rows, c1] * c1Scale; IEnumerable y = (new List() { 150494407424305.47 }) .Concat(Enumerable.Repeat(150494407424305.47, n - 1)); double[] xs = x.ToArray(); double[] ys = y.ToArray(); double r2_alglib = alglib.pearsoncorrelation(xs, ys, n); r2_alglib *= r2_alglib; var r2Calculator = new OnlinePearsonsRSquaredCalculator(); for (int i = 0; i < n; i++) { r2Calculator.Add(xs[i], ys[i]); } double r2 = r2Calculator.RSquared; Assert.AreEqual(r2_alglib.ToString(), r2.ToString()); } } [TestMethod] public void CalculateDirectionalSymmetryTest() { // delta: +0.01, +1, -0.01, -2, -0.01, -1, +0.01, +2 var original = new double[] { 0, 0.01, 1.01, 1, -1, -1.01, -2.01, -2, 0 }; // delta to original(t-1): +1, +0, -1, -0, -1, +0.01, +0.01, +2 var estimated = new double[] { -1, 1, 0.01, 0.01, 1, -1, -1.02, -2.02, 0 }; // one-step forecast var startValues = original; var actualContinuations = from x in original.Skip(1) select Enumerable.Repeat(x, 1); var predictedContinuations = from x in estimated.Skip(1) select Enumerable.Repeat(x, 1); double expected = 0.5; // half of the predicted deltas are correct OnlineCalculatorError errorState; double actual = OnlineDirectionalSymmetryCalculator.Calculate(startValues, actualContinuations, predictedContinuations, out errorState); Assert.AreEqual(expected, actual, 1E-9); } [TestMethod] public void CalculateMultiStepDirectionalSymmetryTest() { // delta: +0.01, +1, -0.01, -2, -0.01, -1, +0.01, +2 var original = new double[] { 0, 0.01, 1.01, 1, -1, -1.01, -2.01, -2, 0 }; { var estimated = new double[][] { new double[] {0.01, 1.01, 1, -1, -1.01}, new double[] {1.01, 1, -1, -1.01, -2.01}, new double[] {1, -1, -1.01, -2.01, -2}, new double[] {-1, -1.01, -2.01, -2, 0} }; // 5-step forecast var startValues = original.Take(4); var actualContinuations = from i in Enumerable.Range(1, original.Count() - 5) select original.Skip(i).Take(5); var predictedContinuations = estimated; double expected = 1; // predictions are 100% correct OnlineCalculatorError errorState; double actual = OnlineDirectionalSymmetryCalculator.Calculate(startValues, actualContinuations, predictedContinuations, out errorState); Assert.AreEqual(expected, actual, 1E-9); } { // only the direction is relevant var estimated = new double[][] { new double[] {0.01, 0.01, 0.01, -0.01, -0.01}, // start=0, original deltas: 0.01, 1.01, 1.00, -1.00, -1.01 new double[] {0.02, 0.02, 0.00, 0.00, 0.00}, // start=0.01, original deltas: 1.00, 0.90, -1.01, -1.02, -2.02, new double[] { 1.00, 1.00, 1.00, 1.00, 1.00}, // start=1.01, original deltas: -0.01, -2.01, -2.02, -3.02, -3.01 new double[] { 0.90, 0.90, 0.90, 0.90, 0.90} // start=1, original deltas: -2.00, -0.01, -3.01, -3.00, -1.00 }; // 5-step forecast var startValues = original.Take(4); var actualContinuations = from i in Enumerable.Range(1, original.Count() - 5) select original.Skip(i).Take(5); var predictedContinuations = estimated; double expected = 1; // half of the predicted deltas are correct OnlineCalculatorError errorState; double actual = OnlineDirectionalSymmetryCalculator.Calculate(startValues, actualContinuations, predictedContinuations, out errorState); Assert.AreEqual(expected, actual, 1E-9); } { // also check incorrectly predicted directions var estimated = new double[][] { new double[] {0.01, 0.01, 0.01, +0.01, +0.01}, // start=0, original deltas: 0.01, 1.01, 1.00, -1.00, -1.01 new double[] {0.02, 0.00, 0.02, 0.00, 0.00}, // start=0.01, original deltas: 1.00, 0.90, -1.01, -1.02, -2.02, new double[] { 1.02, 1.00, 1.02, 1.00, 1.02}, // start=1.01, original deltas: -0.01, -2.01, -2.02, -3.02, -3.01 new double[] { 0.90, 0.90, 0.90, 0.90, 0.90} // start=1, original deltas: -2.00, -0.01, -3.01, -3.00, -1.00 }; // 5-step forecast var startValues = original.Take(4); var actualContinuations = from i in Enumerable.Range(1, original.Count() - 5) select original.Skip(i).Take(5); var predictedContinuations = estimated; double expected = (20 - 7) / 20.0; // half of the predicted deltas are correct OnlineCalculatorError errorState; double actual = OnlineDirectionalSymmetryCalculator.Calculate(startValues, actualContinuations, predictedContinuations, out errorState); Assert.AreEqual(expected, actual, 1E-9); } } [TestMethod] public void CalculateWeightedDirectionalSymmetryTest() { var original = new double[] { 0, 0.01, 1.01, 1, -1, -1.01, -2.01, -2, 0 }; // +0.01, +1, -0.01, -2, -0.01, -1, +0.01, +2 var estimated = new double[] { 1, 2, 2, 1, 1, 0, 0.01, 0.02, 2.02 }; // delta to original: +2, +1.99, -0.01, 0, +1, -1.02, +2.01, +4.02 // one-step forecast var startValues = original; var actualContinuations = from x in original.Skip(1) select Enumerable.Repeat(x, 1); var predictedContinuations = from x in estimated.Skip(1) select Enumerable.Repeat(x, 1); // absolute errors = 1.99, 0.99, 0, 2, 1.01, 2.02, 2.02, 2.02 // sum of absolute errors for correctly predicted deltas = 2.97 // sum of absolute errors for incorrectly predicted deltas = 3.03 double expected = 5.03 / 7.02; OnlineCalculatorError errorState; double actual = OnlineWeightedDirectionalSymmetryCalculator.Calculate(startValues, actualContinuations, predictedContinuations, out errorState); Assert.AreEqual(expected, actual, 1E-9); } [TestMethod] public void CalculateTheilsUTest() { var original = new double[] { 0, 0.01, 1.01, 1, -1, -1.01, -2.01, -2, 0 }; var estimated = new double[] { 1, 1.01, 0.01, 2, 0, -0.01, -1.01, -3, 1 }; // one-step forecast var startValues = original; var actualContinuations = from x in original.Skip(1) select Enumerable.Repeat(x, 1); var predictedContinuations = from x in estimated.Skip(1) select Enumerable.Repeat(x, 1); // Sum of squared errors of model y(t+1) = y(t) = 10.0004 // Sum of squared errors of predicted values = 8 double expected = Math.Sqrt(8 / 10.0004); OnlineCalculatorError errorState; double actual = OnlineTheilsUStatisticCalculator.Calculate(startValues, actualContinuations, predictedContinuations, out errorState); Assert.AreEqual(expected, actual, 1E-9); } [TestMethod] public void CalculateMultiStepTheilsUTest() { var original = new double[] { 0, 0.01, 1.01, 1, -1, -1.01, -2.01, -2, 0 }; { // prefect prediction var estimated = new double[][] { new double[] {0.01, 1.01, 1, -1, -1.01}, new double[] {1.01, 1, -1, -1.01, -2.01}, new double[] {1, -1, -1.01, -2.01, -2}, new double[] {-1, -1.01, -2.01, -2, 0} }; // 5-step forecast var startValues = original.Take(4); var actualContinuations = from i in Enumerable.Range(1, original.Count() - 5) select original.Skip(i).Take(5); var predictedContinuations = estimated; double expected = 0; OnlineCalculatorError errorState; double actual = OnlineTheilsUStatisticCalculator.Calculate(startValues, actualContinuations, predictedContinuations, out errorState); Assert.AreEqual(expected, actual, 1E-9); } { // naive prediction var estimated = new double[][] { new double[] {0, 0, 0, 0, 0}, new double[] {0.01, 0.01, 0.01, 0.01, 0.01}, new double[] {1.01, 1.01, 1.01, 1.01, 1.01}, new double[] {1, 1, 1, 1, 1} }; // 5-step forecast var startValues = original.Take(4); var actualContinuations = from i in Enumerable.Range(1, original.Count() - 5) select original.Skip(i).Take(5); var predictedContinuations = estimated; double expected = 1; OnlineCalculatorError errorState; double actual = OnlineTheilsUStatisticCalculator.Calculate(startValues, actualContinuations, predictedContinuations, out errorState); Assert.AreEqual(expected, actual, 1E-9); } { // realistic prediction var estimated = new double[][] { new double[] {0.005, 0.5, 0.5, -0.5, -0.5}, // start = 0 new double[] {0.60, 0.5, -0.5, -0.5, -1}, // start = 0.01 new double[] {-0.005, 0, 0, -0.5, -1}, // start = 1.01 new double[] {-0, 0, -0.5, -1, 0.5} // start = 1 }; // 5-step forecast var startValues = original.Take(4); var actualContinuations = from i in Enumerable.Range(1, original.Count() - 5) select original.Skip(i).Take(5); var predictedContinuations = estimated; double expected = 0.47558387; OnlineCalculatorError errorState; double actual = OnlineTheilsUStatisticCalculator.Calculate(startValues, actualContinuations, predictedContinuations, out errorState); Assert.AreEqual(expected, actual, 1E-6); } } [TestMethod] public void CalculateAccuracyTest() { var original = new double[] { 1, 1, 0, 0 }; var estimated = new double[] { 1, 0, 1, 0 }; double expected = 0.5; OnlineCalculatorError errorState; double actual = OnlineAccuracyCalculator.Calculate(original, estimated, out errorState); Assert.AreEqual(expected, actual, 1E-9); } [TestMethod] public void CalculateMeanAbsolutePercentageErrorTest() { var original = new double[] { 1, 2, 3, 1, 5 }; var estimated = new double[] { 2, 1, 3, 1, 0 }; double expected = 0.5; OnlineCalculatorError errorState; double actual = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(original, estimated, out errorState); Assert.AreEqual(expected, actual, 1E-9); Assert.AreEqual(OnlineCalculatorError.None, errorState); // if the original contains zero values the result is not defined var original2 = new double[] { 1, 2, 0, 0, 0 }; OnlineMeanAbsolutePercentageErrorCalculator.Calculate(original2, estimated, out errorState); Assert.AreEqual(OnlineCalculatorError.InvalidValueAdded, errorState); } } }