#region License Information /* HeuristicLab * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections; using System.Collections.Generic; using System.IO; using System.Linq; using System.Text; using HeuristicLab.Problems.DataAnalysis; namespace HeuristicLab.Problems.Instances.DataAnalysis { public abstract class ClassificationInstanceProvider : IProblemInstanceProvider { public IClassificationProblemData LoadData(string path) { TableFileParser csvFileParser = new TableFileParser(); csvFileParser.Parse(path); Dataset dataset = new Dataset(csvFileParser.VariableNames, csvFileParser.Values); string targetVar = csvFileParser.VariableNames.Last(); IEnumerable allowedInputVars = csvFileParser.VariableNames.Where(x => !x.Equals(targetVar)); ClassificationProblemData claData = new ClassificationProblemData(dataset, allowedInputVars, targetVar); int trainingPartEnd = csvFileParser.Rows * 2 / 3; claData.TrainingPartition.Start = 0; claData.TrainingPartition.End = trainingPartEnd; claData.TestPartition.Start = trainingPartEnd; claData.TestPartition.End = csvFileParser.Rows; int pos = path.LastIndexOf('\\'); if (pos < 0) claData.Name = path; else { pos++; claData.Name = path.Substring(pos, path.Length - pos); } return claData; } public void SaveData(IClassificationProblemData instance, string path) { StringBuilder strBuilder = new StringBuilder(); foreach (var variable in instance.InputVariables) { strBuilder.Append(variable + ";"); } strBuilder.Remove(strBuilder.Length - 1, 1); strBuilder.AppendLine(); Dataset dataset = instance.Dataset; for (int i = 0; i < dataset.Rows; i++) { for (int j = 0; j < dataset.Columns; j++) { strBuilder.Append(dataset.GetValue(i, j) + ";"); } strBuilder.Remove(strBuilder.Length - 1, 1); strBuilder.AppendLine(); } using (StreamWriter writer = new StreamWriter(path)) { writer.Write(strBuilder); } } public abstract IEnumerable GetDataDescriptors(); public abstract IClassificationProblemData LoadData(IDataDescriptor descriptor); public abstract string Name { get; } public abstract string Description { get; } public abstract Uri WebLink { get; } public abstract string ReferencePublication { get; } } }