#region License Information /* HeuristicLab * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Data; using HeuristicLab.Optimization; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis { [StorableClass] public abstract class TimeSeriesPrognosisSolutionBase : RegressionSolutionBase, ITimeSeriesPrognosisSolution { #region result names protected const string TrainingDirectionalSymmetryResultName = "Average directional symmetry (training)"; protected const string TestDirectionalSymmetryResultName = "Average directional symmetry (test)"; protected const string TrainingWeightedDirectionalSymmetryResultName = "Average weighted directional symmetry (training)"; protected const string TestWeightedDirectionalSymmetryResultName = "Average weighted directional symmetry (test)"; protected const string TrainingTheilsUStatisticAR1ResultName = "Theil's U2 (AR1) (training)"; protected const string TestTheilsUStatisticLastResultName = "Theil's U2 (AR1) (test)"; protected const string TrainingTheilsUStatisticMeanResultName = "Theil's U2 (mean) (training)"; protected const string TestTheilsUStatisticMeanResultName = "Theil's U2 (mean) (test)"; protected const string TrainingTheilsUStatisticMovingAverageResultName = "Theil's U2 (moving average) (training)"; protected const string TestTheilsUStatisticMovingAverageResultName = "Theil's U2 (moving average) (test)"; protected const string PrognosisTrainingMeanSquaredErrorResultName = "Prognosis " + TrainingMeanSquaredErrorResultName; protected const string PrognosisTestMeanSquaredErrorResultName = "Prognosis " + TestMeanSquaredErrorResultName; protected const string PrognosisTrainingMeanAbsoluteErrorResultName = "Prognosis " + TrainingMeanAbsoluteErrorResultName; protected const string PrognosisTestMeanAbsoluteErrorResultName = "Prognosis " + TestMeanAbsoluteErrorResultName; protected const string PrognosisTrainingSquaredCorrelationResultName = "Prognosis " + TrainingSquaredCorrelationResultName; protected const string PrognosisTestSquaredCorrelationResultName = "Prognosis " + TestSquaredCorrelationResultName; protected const string PrognosisTrainingRelativeErrorResultName = "Prognosis " + TrainingRelativeErrorResultName; protected const string PrognosisTestRelativeErrorResultName = "Prognosis " + TestRelativeErrorResultName; protected const string PrognosisTrainingNormalizedMeanSquaredErrorResultName = "Prognosis " + TrainingNormalizedMeanSquaredErrorResultName; protected const string PrognosisTestNormalizedMeanSquaredErrorResultName = "Prognosis " + TestNormalizedMeanSquaredErrorResultName; protected const string PrognosisTrainingMeanErrorResultName = "Prognosis " + TrainingMeanErrorResultName; protected const string PrognosisTestMeanErrorResultName = "Prognosis " + TestMeanErrorResultName; protected const string PrognosisTrainingDirectionalSymmetryResultName = "Prognosis " + TrainingDirectionalSymmetryResultName; protected const string PrognosisTestDirectionalSymmetryResultName = "Prognosis " + TestDirectionalSymmetryResultName; protected const string PrognosisTrainingWeightedDirectionalSymmetryResultName = "Prognosis " + TrainingWeightedDirectionalSymmetryResultName; protected const string PrognosisTestWeightedDirectionalSymmetryResultName = "Prognosis " + TestWeightedDirectionalSymmetryResultName; protected const string PrognosisTrainingTheilsUStatisticAR1ResultName = "Prognosis " + TrainingTheilsUStatisticAR1ResultName; protected const string PrognosisTestTheilsUStatisticAR1ResultName = "Prognosis " + TestTheilsUStatisticLastResultName; protected const string PrognosisTrainingTheilsUStatisticMeanResultName = "Prognosis " + TrainingTheilsUStatisticMeanResultName; protected const string PrognosisTestTheilsUStatisticMeanResultName = "Prognosis " + TestTheilsUStatisticMeanResultName; protected const string PrognosisTrainingTheilsUStatisticMovingAverageResultName = "Prognosis " + TrainingTheilsUStatisticMovingAverageResultName; protected const string PrognosisTestTheilsUStatisticMovingAverageResultName = "Prognosis " + TestTheilsUStatisticMovingAverageResultName; #endregion #region result descriptions protected const string TrainingDirectionalSymmetryResultDescription = "The average directional symmetry of the forecasts of the model on the training partition"; protected const string TestDirectionalSymmetryResultDescription = "The average directional symmetry of the forecasts of the model on the test partition"; protected const string TrainingWeightedDirectionalSymmetryResultDescription = "The average weighted directional symmetry of the forecasts of the model on the training partition"; protected const string TestWeightedDirectionalSymmetryResultDescription = "The average weighted directional symmetry of the forecasts of the model on the test partition"; protected const string TrainingTheilsUStatisticAR1ResultDescription = "The Theil's U statistic (reference: AR1 model) of the forecasts of the model on the training partition"; protected const string TestTheilsUStatisticAR1ResultDescription = "The Theil's U statistic (reference: AR1 model) of the forecasts of the model on the test partition"; protected const string TrainingTheilsUStatisticMeanResultDescription = "The Theil's U statistic (reference: mean model) of the forecasts of the model on the training partition"; protected const string TestTheilsUStatisticMeanResultDescription = "The Theil's U statistic (reference: mean value) of the forecasts of the model on the test partition"; protected const string TrainingTheilsUStatisticMovingAverageResultDescription = "The Theil's U statistic (reference: moving average model) of the forecasts of the model on the training partition"; protected const string TestTheilsUStatisticMovingAverageResultDescription = "The Theil's U statistic (reference: moving average model) of the forecasts of the model on the test partition"; protected const string PrognosisTrainingMeanSquaredErrorResultDescription = TrainingMeanSquaredErrorResultDescription; protected const string PrognosisTestMeanSquaredErrorResultDescription = TestMeanSquaredErrorResultDescription; protected const string PrognosisTrainingMeanAbsoluteErrorResultDescription = TrainingMeanAbsoluteErrorResultDescription; protected const string PrognosisTestMeanAbsoluteErrorResultDescription = TestMeanAbsoluteErrorResultDescription; protected const string PrognosisTrainingSquaredCorrelationResultDescription = TrainingSquaredCorrelationResultDescription; protected const string PrognosisTestSquaredCorrelationResultDescription = TestSquaredCorrelationResultDescription; protected const string PrognosisTrainingRelativeErrorResultDescription = TrainingRelativeErrorResultDescription; protected const string PrognosisTestRelativeErrorResultDescription = TestRelativeErrorResultDescription; protected const string PrognosisTrainingNormalizedMeanSquaredErrorResultDescription = TrainingNormalizedMeanSquaredErrorResultDescription; protected const string PrognosisTestNormalizedMeanSquaredErrorResultDescription = TestNormalizedMeanSquaredErrorResultDescription; protected const string PrognosisTrainingMeanErrorResultDescription = TrainingMeanErrorResultDescription; protected const string PrognosisTestMeanErrorResultDescription = TestMeanErrorResultDescription; protected const string PrognosisTrainingDirectionalSymmetryResultDescription = TrainingDirectionalSymmetryResultDescription; protected const string PrognosisTestDirectionalSymmetryResultDescription = TestDirectionalSymmetryResultDescription; protected const string PrognosisTrainingWeightedDirectionalSymmetryResultDescription = TrainingWeightedDirectionalSymmetryResultDescription; protected const string PrognosisTestWeightedDirectionalSymmetryResultDescription = TestWeightedDirectionalSymmetryResultDescription; protected const string PrognosisTrainingTheilsUStatisticAR1ResultDescription = TrainingTheilsUStatisticAR1ResultDescription; protected const string PrognosisTestTheilsUStatisticAR1ResultDescription = TestTheilsUStatisticAR1ResultDescription; protected const string PrognosisTrainingTheilsUStatisticMeanResultDescription = TrainingTheilsUStatisticMeanResultDescription; protected const string PrognosisTestTheilsUStatisticMeanResultDescription = TestTheilsUStatisticMeanResultDescription; protected const string PrognosisTrainingTheilsUStatisticMovingAverageResultDescription = TrainingTheilsUStatisticMovingAverageResultDescription; protected const string PrognosisTestTheilsUStatisticMovingAverageResultDescription = TestTheilsUStatisticMovingAverageResultDescription; #endregion public new ITimeSeriesPrognosisModel Model { get { return (ITimeSeriesPrognosisModel)base.Model; } protected set { base.Model = value; } } public new ITimeSeriesPrognosisProblemData ProblemData { get { return (ITimeSeriesPrognosisProblemData)base.ProblemData; } set { base.ProblemData = value; } } public abstract IEnumerable> GetPrognosedValues(IEnumerable rows, IEnumerable horizon); #region Results public double TrainingDirectionalSymmetry { get { return ((DoubleValue)this[TrainingDirectionalSymmetryResultName].Value).Value; } private set { ((DoubleValue)this[TrainingDirectionalSymmetryResultName].Value).Value = value; } } public double TestDirectionalSymmetry { get { return ((DoubleValue)this[TestDirectionalSymmetryResultName].Value).Value; } private set { ((DoubleValue)this[TestDirectionalSymmetryResultName].Value).Value = value; } } public double TrainingWeightedDirectionalSymmetry { get { return ((DoubleValue)this[TrainingWeightedDirectionalSymmetryResultName].Value).Value; } private set { ((DoubleValue)this[TrainingWeightedDirectionalSymmetryResultName].Value).Value = value; } } public double TestWeightedDirectionalSymmetry { get { return ((DoubleValue)this[TestWeightedDirectionalSymmetryResultName].Value).Value; } private set { ((DoubleValue)this[TestWeightedDirectionalSymmetryResultName].Value).Value = value; } } public double TrainingTheilsUStatisticAR1 { get { return ((DoubleValue)this[TrainingTheilsUStatisticAR1ResultName].Value).Value; } private set { ((DoubleValue)this[TrainingTheilsUStatisticAR1ResultName].Value).Value = value; } } public double TestTheilsUStatisticAR1 { get { return ((DoubleValue)this[TestTheilsUStatisticLastResultName].Value).Value; } private set { ((DoubleValue)this[TestTheilsUStatisticLastResultName].Value).Value = value; } } public double TrainingTheilsUStatisticMean { get { return ((DoubleValue)this[TrainingTheilsUStatisticMeanResultName].Value).Value; } private set { ((DoubleValue)this[TrainingTheilsUStatisticMeanResultName].Value).Value = value; } } public double TestTheilsUStatisticMean { get { return ((DoubleValue)this[TestTheilsUStatisticMeanResultName].Value).Value; } private set { ((DoubleValue)this[TestTheilsUStatisticMeanResultName].Value).Value = value; } } public double TrainingTheilsUStatisticMovingAverage { get { return ((DoubleValue)this[TrainingTheilsUStatisticMovingAverageResultName].Value).Value; } private set { ((DoubleValue)this[TrainingTheilsUStatisticMovingAverageResultName].Value).Value = value; } } public double TestTheilsUStatisticMovingAverage { get { return ((DoubleValue)this[TestTheilsUStatisticMovingAverageResultName].Value).Value; } private set { ((DoubleValue)this[TestTheilsUStatisticMovingAverageResultName].Value).Value = value; } } //prognosis results for different horizons public double PrognosisTrainingMeanSquaredError { get { if (!ContainsKey(PrognosisTrainingMeanSquaredErrorResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTrainingMeanSquaredErrorResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTrainingMeanSquaredErrorResultName)) Add(new Result(PrognosisTrainingMeanSquaredErrorResultName, PrognosisTrainingMeanSquaredErrorResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTrainingMeanSquaredErrorResultName].Value).Value = value; } } public double PrognosisTestMeanSquaredError { get { if (!ContainsKey(PrognosisTestMeanSquaredErrorResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTestMeanSquaredErrorResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTestMeanSquaredErrorResultName)) Add(new Result(PrognosisTestMeanSquaredErrorResultName, PrognosisTestMeanSquaredErrorResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTestMeanSquaredErrorResultName].Value).Value = value; } } public double PrognosisTrainingMeanAbsoluteError { get { if (!ContainsKey(PrognosisTrainingMeanAbsoluteErrorResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTrainingMeanAbsoluteErrorResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTrainingMeanAbsoluteErrorResultName)) Add(new Result(PrognosisTrainingMeanAbsoluteErrorResultName, PrognosisTrainingMeanAbsoluteErrorResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTrainingMeanAbsoluteErrorResultName].Value).Value = value; } } public double PrognosisTestMeanAbsoluteError { get { if (!ContainsKey(PrognosisTestMeanAbsoluteErrorResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTestMeanAbsoluteErrorResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTestMeanAbsoluteErrorResultName)) Add(new Result(PrognosisTestMeanAbsoluteErrorResultName, PrognosisTestMeanAbsoluteErrorResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTestMeanAbsoluteErrorResultName].Value).Value = value; } } public double PrognosisTrainingRSquared { get { if (!ContainsKey(PrognosisTrainingSquaredCorrelationResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTrainingSquaredCorrelationResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTrainingSquaredCorrelationResultName)) Add(new Result(PrognosisTrainingSquaredCorrelationResultName, PrognosisTrainingSquaredCorrelationResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTrainingSquaredCorrelationResultName].Value).Value = value; } } public double PrognosisTestRSquared { get { if (!ContainsKey(PrognosisTestSquaredCorrelationResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTestSquaredCorrelationResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTestSquaredCorrelationResultName)) Add(new Result(PrognosisTestSquaredCorrelationResultName, PrognosisTestSquaredCorrelationResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTestSquaredCorrelationResultName].Value).Value = value; } } public double PrognosisTrainingRelativeError { get { if (!ContainsKey(PrognosisTrainingRelativeErrorResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTrainingRelativeErrorResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTrainingRelativeErrorResultName)) Add(new Result(PrognosisTrainingRelativeErrorResultName, PrognosisTrainingRelativeErrorResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTrainingRelativeErrorResultName].Value).Value = value; } } public double PrognosisTestRelativeError { get { if (!ContainsKey(PrognosisTestRelativeErrorResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTestRelativeErrorResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTestRelativeErrorResultName)) Add(new Result(PrognosisTestRelativeErrorResultName, PrognosisTestRelativeErrorResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTestRelativeErrorResultName].Value).Value = value; } } public double PrognosisTrainingNormalizedMeanSquaredError { get { if (!ContainsKey(PrognosisTrainingNormalizedMeanSquaredErrorResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTrainingNormalizedMeanSquaredErrorResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTrainingNormalizedMeanSquaredErrorResultName)) Add(new Result(PrognosisTrainingNormalizedMeanSquaredErrorResultName, PrognosisTrainingNormalizedMeanSquaredErrorResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTrainingNormalizedMeanSquaredErrorResultName].Value).Value = value; } } public double PrognosisTestNormalizedMeanSquaredError { get { if (!ContainsKey(PrognosisTestNormalizedMeanSquaredErrorResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTestNormalizedMeanSquaredErrorResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTestNormalizedMeanSquaredErrorResultName)) Add(new Result(PrognosisTestNormalizedMeanSquaredErrorResultName, PrognosisTestNormalizedMeanSquaredErrorResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTestNormalizedMeanSquaredErrorResultName].Value).Value = value; } } public double PrognosisTrainingMeanError { get { if (!ContainsKey(PrognosisTrainingMeanErrorResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTrainingMeanErrorResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTrainingMeanErrorResultName)) Add(new Result(PrognosisTrainingMeanErrorResultName, PrognosisTrainingMeanErrorResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTrainingMeanErrorResultName].Value).Value = value; } } public double PrognosisTestMeanError { get { if (!ContainsKey(PrognosisTestMeanErrorResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTestMeanErrorResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTestMeanErrorResultName)) Add(new Result(PrognosisTestMeanErrorResultName, PrognosisTestMeanErrorResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTestMeanErrorResultName].Value).Value = value; } } public double PrognosisTrainingDirectionalSymmetry { get { if (!ContainsKey(PrognosisTrainingDirectionalSymmetryResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTrainingDirectionalSymmetryResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTrainingDirectionalSymmetryResultName)) Add(new Result(PrognosisTrainingDirectionalSymmetryResultName, PrognosisTrainingDirectionalSymmetryResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTrainingDirectionalSymmetryResultName].Value).Value = value; } } public double PrognosisTestDirectionalSymmetry { get { if (!ContainsKey(PrognosisTestDirectionalSymmetryResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTestDirectionalSymmetryResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTestDirectionalSymmetryResultName)) Add(new Result(PrognosisTestDirectionalSymmetryResultName, PrognosisTestDirectionalSymmetryResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTestDirectionalSymmetryResultName].Value).Value = value; } } public double PrognosisTrainingWeightedDirectionalSymmetry { get { if (!ContainsKey(PrognosisTrainingWeightedDirectionalSymmetryResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTrainingWeightedDirectionalSymmetryResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTrainingWeightedDirectionalSymmetryResultName)) Add(new Result(PrognosisTrainingWeightedDirectionalSymmetryResultName, PrognosisTrainingWeightedDirectionalSymmetryResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTrainingWeightedDirectionalSymmetryResultName].Value).Value = value; } } public double PrognosisTestWeightedDirectionalSymmetry { get { if (!ContainsKey(PrognosisTestWeightedDirectionalSymmetryResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTestWeightedDirectionalSymmetryResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTestWeightedDirectionalSymmetryResultName)) Add(new Result(PrognosisTestWeightedDirectionalSymmetryResultName, PrognosisTestWeightedDirectionalSymmetryResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTestWeightedDirectionalSymmetryResultName].Value).Value = value; } } public double PrognosisTrainingTheilsUStatisticAR1 { get { if (!ContainsKey(PrognosisTrainingTheilsUStatisticAR1ResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTrainingTheilsUStatisticAR1ResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTrainingTheilsUStatisticAR1ResultName)) Add(new Result(PrognosisTrainingTheilsUStatisticAR1ResultName, PrognosisTrainingTheilsUStatisticAR1ResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTrainingTheilsUStatisticAR1ResultName].Value).Value = value; } } public double PrognosisTestTheilsUStatisticAR1 { get { if (!ContainsKey(PrognosisTestTheilsUStatisticAR1ResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTestTheilsUStatisticAR1ResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTestTheilsUStatisticAR1ResultName)) Add(new Result(PrognosisTestTheilsUStatisticAR1ResultName, PrognosisTestTheilsUStatisticAR1ResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTestTheilsUStatisticAR1ResultName].Value).Value = value; } } public double PrognosisTrainingTheilsUStatisticMean { get { if (!ContainsKey(PrognosisTrainingTheilsUStatisticMeanResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTrainingTheilsUStatisticMeanResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTrainingTheilsUStatisticMeanResultName)) Add(new Result(PrognosisTrainingTheilsUStatisticMeanResultName, PrognosisTrainingTheilsUStatisticMeanResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTrainingTheilsUStatisticMeanResultName].Value).Value = value; } } public double PrognosisTestTheilsUStatisticMean { get { if (!ContainsKey(PrognosisTestTheilsUStatisticMeanResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTestTheilsUStatisticMeanResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTestTheilsUStatisticMeanResultName)) Add(new Result(PrognosisTestTheilsUStatisticMeanResultName, PrognosisTestTheilsUStatisticMeanResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTestTheilsUStatisticMeanResultName].Value).Value = value; } } public double PrognosisTrainingTheilsUStatisticMovingAverage { get { if (!ContainsKey(PrognosisTrainingTheilsUStatisticMovingAverageResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTrainingTheilsUStatisticMovingAverageResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTrainingTheilsUStatisticMovingAverageResultName)) Add(new Result(PrognosisTrainingTheilsUStatisticMovingAverageResultName, PrognosisTrainingTheilsUStatisticMovingAverageResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTrainingTheilsUStatisticMovingAverageResultName].Value).Value = value; } } public double PrognosisTestTheilsUStatisticMovingAverage { get { if (!ContainsKey(PrognosisTestTheilsUStatisticMovingAverageResultName)) return double.NaN; return ((DoubleValue)this[PrognosisTestTheilsUStatisticMovingAverageResultName].Value).Value; } private set { if (!ContainsKey(PrognosisTestTheilsUStatisticMovingAverageResultName)) Add(new Result(PrognosisTestTheilsUStatisticMovingAverageResultName, PrognosisTestTheilsUStatisticMovingAverageResultDescription, new DoubleValue())); ((DoubleValue)this[PrognosisTestTheilsUStatisticMovingAverageResultName].Value).Value = value; } } #endregion public override IEnumerable EstimatedValues { get { return GetEstimatedValues(Enumerable.Range(0, ProblemData.Dataset.Rows)); } } public override IEnumerable EstimatedTrainingValues { get { return GetEstimatedValues(ProblemData.TrainingIndices); } } public override IEnumerable EstimatedTestValues { get { return GetEstimatedValues(ProblemData.TestIndices); } } public override IEnumerable GetEstimatedValues(IEnumerable rows) { return Model.GetEstimatedValues(ProblemData.Dataset, rows); } [StorableConstructor] protected TimeSeriesPrognosisSolutionBase(bool deserializing) : base(deserializing) { } protected TimeSeriesPrognosisSolutionBase(TimeSeriesPrognosisSolutionBase original, Cloner cloner) : base(original, cloner) { } protected TimeSeriesPrognosisSolutionBase(ITimeSeriesPrognosisModel model, ITimeSeriesPrognosisProblemData problemData) : base(model, problemData) { Add(new Result(TrainingDirectionalSymmetryResultName, TrainingDirectionalSymmetryResultDescription, new DoubleValue())); Add(new Result(TestDirectionalSymmetryResultName, TestDirectionalSymmetryResultDescription, new DoubleValue())); Add(new Result(TrainingWeightedDirectionalSymmetryResultName, TrainingWeightedDirectionalSymmetryResultDescription, new DoubleValue())); Add(new Result(TestWeightedDirectionalSymmetryResultName, TestWeightedDirectionalSymmetryResultDescription, new DoubleValue())); Add(new Result(TrainingTheilsUStatisticAR1ResultName, TrainingTheilsUStatisticAR1ResultDescription, new DoubleValue())); Add(new Result(TestTheilsUStatisticLastResultName, TestTheilsUStatisticAR1ResultDescription, new DoubleValue())); Add(new Result(TrainingTheilsUStatisticMeanResultName, TrainingTheilsUStatisticMeanResultDescription, new DoubleValue())); Add(new Result(TestTheilsUStatisticMeanResultName, TestTheilsUStatisticMeanResultDescription, new DoubleValue())); Add(new Result(TrainingTheilsUStatisticMovingAverageResultName, TrainingTheilsUStatisticMovingAverageResultDescription, new DoubleValue())); Add(new Result(TestTheilsUStatisticMovingAverageResultName, TestTheilsUStatisticMovingAverageResultDescription, new DoubleValue())); } protected override void RecalculateResults() { base.RecalculateResults(); CalculateTimeSeriesResults(); CalculateTimeSeriesResults(ProblemData.TrainingHorizon, ProblemData.TestHorizon); } private void CalculateTimeSeriesResults() { OnlineCalculatorError errorState; double trainingMean = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).Average(); var meanModel = new ConstantTimeSeriesPrognosisModel(trainingMean); double alpha, beta; IEnumerable trainingStartValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices.Select(r => r - 1).Where(r => r > 0)).ToList(); OnlineLinearScalingParameterCalculator.Calculate(ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices.Where(x => x > 0)), trainingStartValues, out alpha, out beta, out errorState); var AR1model = new TimeSeriesPrognosisAutoRegressiveModel(ProblemData.TargetVariable, new double[] { beta }, alpha); //MA model const int movingAverageWindowSize = 10; var movingAverageModel = new TimeSeriesPrognosisMovingAverageModel(movingAverageWindowSize, ProblemData.TargetVariable); #region Calculate training quality measures IEnumerable trainingTargetValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).ToList(); IEnumerable trainingEstimatedValues = EstimatedTrainingValues.ToList(); IEnumerable trainingMeanModelPredictions = meanModel.GetEstimatedValues(ProblemData.Dataset, ProblemData.TrainingIndices).ToList(); IEnumerable trainingAR1ModelPredictions = AR1model.GetEstimatedValues(ProblemData.Dataset, ProblemData.TrainingIndices).ToList(); IEnumerable trainingMovingAverageModelPredictions = movingAverageModel.GetEstimatedValues(ProblemData.Dataset, ProblemData.TrainingIndices).ToList(); TrainingDirectionalSymmetry = OnlineDirectionalSymmetryCalculator.Calculate(trainingTargetValues.First(), trainingTargetValues, trainingEstimatedValues, out errorState); TrainingDirectionalSymmetry = errorState == OnlineCalculatorError.None ? TrainingDirectionalSymmetry : 0.0; TrainingWeightedDirectionalSymmetry = OnlineWeightedDirectionalSymmetryCalculator.Calculate(trainingTargetValues.First(), trainingTargetValues, trainingEstimatedValues, out errorState); TrainingWeightedDirectionalSymmetry = errorState == OnlineCalculatorError.None ? TrainingWeightedDirectionalSymmetry : 0.0; TrainingTheilsUStatisticAR1 = OnlineTheilsUStatisticCalculator.Calculate(trainingTargetValues.First(), trainingTargetValues, trainingAR1ModelPredictions, trainingEstimatedValues, out errorState); TrainingTheilsUStatisticAR1 = errorState == OnlineCalculatorError.None ? TrainingTheilsUStatisticAR1 : double.PositiveInfinity; TrainingTheilsUStatisticMean = OnlineTheilsUStatisticCalculator.Calculate(trainingTargetValues.First(), trainingTargetValues, trainingMeanModelPredictions, trainingEstimatedValues, out errorState); TrainingTheilsUStatisticMean = errorState == OnlineCalculatorError.None ? TrainingTheilsUStatisticMean : double.PositiveInfinity; TrainingTheilsUStatisticMovingAverage = OnlineTheilsUStatisticCalculator.Calculate(trainingTargetValues.First(), trainingTargetValues, trainingMovingAverageModelPredictions, trainingEstimatedValues, out errorState); TrainingTheilsUStatisticMovingAverage = errorState == OnlineCalculatorError.None ? TrainingTheilsUStatisticMovingAverage : double.PositiveInfinity; #endregion #region Calculate test quality measures IEnumerable testTargetValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndices).ToList(); IEnumerable testEstimatedValues = EstimatedTestValues.ToList(); IEnumerable testMeanModelPredictions = meanModel.GetEstimatedValues(ProblemData.Dataset, ProblemData.TestIndices).ToList(); IEnumerable testAR1ModelPredictions = AR1model.GetEstimatedValues(ProblemData.Dataset, ProblemData.TestIndices).ToList(); IEnumerable testMovingAverageModelPredictions = movingAverageModel.GetEstimatedValues(ProblemData.Dataset, ProblemData.TestIndices).ToList(); TestDirectionalSymmetry = OnlineDirectionalSymmetryCalculator.Calculate(testTargetValues.First(), testTargetValues, testEstimatedValues, out errorState); TestDirectionalSymmetry = errorState == OnlineCalculatorError.None ? TestDirectionalSymmetry : 0.0; TestWeightedDirectionalSymmetry = OnlineWeightedDirectionalSymmetryCalculator.Calculate(testTargetValues.First(), testTargetValues, testEstimatedValues, out errorState); TestWeightedDirectionalSymmetry = errorState == OnlineCalculatorError.None ? TestWeightedDirectionalSymmetry : 0.0; TestTheilsUStatisticAR1 = OnlineTheilsUStatisticCalculator.Calculate(testTargetValues.First(), testTargetValues, testAR1ModelPredictions, testEstimatedValues, out errorState); TestTheilsUStatisticAR1 = errorState == OnlineCalculatorError.None ? TestTheilsUStatisticAR1 : double.PositiveInfinity; TestTheilsUStatisticMean = OnlineTheilsUStatisticCalculator.Calculate(testTargetValues.First(), testTargetValues, testMeanModelPredictions, testEstimatedValues, out errorState); TestTheilsUStatisticMean = errorState == OnlineCalculatorError.None ? TestTheilsUStatisticMean : double.PositiveInfinity; TestTheilsUStatisticMovingAverage = OnlineTheilsUStatisticCalculator.Calculate(testTargetValues.First(), testTargetValues, testMovingAverageModelPredictions, testEstimatedValues, out errorState); TestTheilsUStatisticMovingAverage = errorState == OnlineCalculatorError.None ? TestTheilsUStatisticMovingAverage : double.PositiveInfinity; #endregion } private void CalculateTimeSeriesResults(int trainingHorizon, int testHorizon) { OnlineCalculatorError errorState; //mean model double trainingMean = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).Average(); var meanModel = new ConstantTimeSeriesPrognosisModel(trainingMean); //AR1 model double alpha, beta; IEnumerable trainingStartValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices.Select(r => r - 1).Where(r => r > 0)).ToList(); OnlineLinearScalingParameterCalculator.Calculate(ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices.Where(x => x > 0)), trainingStartValues, out alpha, out beta, out errorState); var AR1model = new TimeSeriesPrognosisAutoRegressiveModel(ProblemData.TargetVariable, new double[] { beta }, alpha); //MA model const int movingAverageWindowSize = 10; var MovingAverageModel = new TimeSeriesPrognosisMovingAverageModel(movingAverageWindowSize, ProblemData.TargetVariable); #region Calculate training quality measures if (trainingHorizon != 1) { var trainingHorizions = ProblemData.TrainingIndices.Select(r => Math.Min(trainingHorizon, ProblemData.TrainingPartition.End - r)).ToList(); IEnumerable> trainingTargetValues = ProblemData.TrainingIndices.Zip(trainingHorizions, Enumerable.Range).Select(r => ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, r)).ToList(); IEnumerable> trainingEstimatedValues = Model.GetPrognosedValues(ProblemData.Dataset, ProblemData.TrainingIndices, trainingHorizions).ToList(); IEnumerable> trainingMeanModelPredictions = meanModel.GetPrognosedValues(ProblemData.Dataset, ProblemData.TrainingIndices, trainingHorizions).ToList(); IEnumerable> trainingAR1ModelPredictions = AR1model.GetPrognosedValues(ProblemData.Dataset, ProblemData.TrainingIndices, trainingHorizions).ToList(); IEnumerable> trainingMovingAverageModelPredictions = MovingAverageModel.GetPrognosedValues(ProblemData.Dataset, ProblemData.TrainingIndices, trainingHorizions).ToList(); IEnumerable originalTrainingValues = trainingTargetValues.SelectMany(x => x).ToList(); IEnumerable estimatedTrainingValues = trainingEstimatedValues.SelectMany(x => x).ToList(); double trainingMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); PrognosisTrainingMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingMSE : double.NaN; double trainingMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); PrognosisTrainingMeanAbsoluteError = errorState == OnlineCalculatorError.None ? trainingMAE : double.NaN; double trainingR2 = OnlinePearsonsRSquaredCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); PrognosisTrainingRSquared = errorState == OnlineCalculatorError.None ? trainingR2 : double.NaN; double trainingRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); PrognosisTrainingRelativeError = errorState == OnlineCalculatorError.None ? trainingRelError : double.NaN; double trainingNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); PrognosisTrainingNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingNMSE : double.NaN; double trainingME = OnlineMeanErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState); PrognosisTrainingMeanError = errorState == OnlineCalculatorError.None ? trainingME : double.NaN; PrognosisTrainingDirectionalSymmetry = OnlineDirectionalSymmetryCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingEstimatedValues, out errorState); PrognosisTrainingDirectionalSymmetry = errorState == OnlineCalculatorError.None ? PrognosisTrainingDirectionalSymmetry : 0.0; PrognosisTrainingWeightedDirectionalSymmetry = OnlineWeightedDirectionalSymmetryCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingEstimatedValues, out errorState); PrognosisTrainingWeightedDirectionalSymmetry = errorState == OnlineCalculatorError.None ? PrognosisTrainingWeightedDirectionalSymmetry : 0.0; PrognosisTrainingTheilsUStatisticAR1 = OnlineTheilsUStatisticCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingAR1ModelPredictions, trainingEstimatedValues, out errorState); PrognosisTrainingTheilsUStatisticAR1 = errorState == OnlineCalculatorError.None ? PrognosisTrainingTheilsUStatisticAR1 : double.PositiveInfinity; PrognosisTrainingTheilsUStatisticMean = OnlineTheilsUStatisticCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingMeanModelPredictions, trainingEstimatedValues, out errorState); PrognosisTrainingTheilsUStatisticMean = errorState == OnlineCalculatorError.None ? PrognosisTrainingTheilsUStatisticMean : double.PositiveInfinity; PrognosisTrainingTheilsUStatisticMovingAverage = OnlineTheilsUStatisticCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingMovingAverageModelPredictions, trainingEstimatedValues, out errorState); PrognosisTrainingTheilsUStatisticMovingAverage = errorState == OnlineCalculatorError.None ? PrognosisTrainingTheilsUStatisticMovingAverage : double.PositiveInfinity; } #endregion #region Calculate test quality measures if (testHorizon != 1) { var testHorizions = ProblemData.TestIndices.Select(r => Math.Min(testHorizon, ProblemData.TestPartition.End - r)).ToList(); IEnumerable> testTargetValues = ProblemData.TestIndices.Zip(testHorizions, Enumerable.Range).Select(r => ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, r)).ToList(); IEnumerable> testEstimatedValues = Model.GetPrognosedValues(ProblemData.Dataset, ProblemData.TestIndices, testHorizions).ToList(); IEnumerable testStartValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndices.Select(r => r - 1).Where(r => r > 0)).ToList(); IEnumerable> testMeanModelPredictions = meanModel.GetPrognosedValues(ProblemData.Dataset, ProblemData.TestIndices, testHorizions).ToList(); IEnumerable> testAR1ModelPredictions = AR1model.GetPrognosedValues(ProblemData.Dataset, ProblemData.TestIndices, testHorizions).ToList(); IEnumerable> testMovingAverageModelPredictions = MovingAverageModel.GetPrognosedValues(ProblemData.Dataset, ProblemData.TestIndices, testHorizions).ToList(); IEnumerable originalTestValues = testTargetValues.SelectMany(x => x).ToList(); IEnumerable estimatedTestValues = testEstimatedValues.SelectMany(x => x).ToList(); double testMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); PrognosisTestMeanSquaredError = errorState == OnlineCalculatorError.None ? testMSE : double.NaN; double testMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); PrognosisTestMeanAbsoluteError = errorState == OnlineCalculatorError.None ? testMAE : double.NaN; double testR2 = OnlinePearsonsRSquaredCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); PrognosisTestRSquared = errorState == OnlineCalculatorError.None ? testR2 : double.NaN; double testRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); PrognosisTestRelativeError = errorState == OnlineCalculatorError.None ? testRelError : double.NaN; double testNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); PrognosisTestNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? testNMSE : double.NaN; double testME = OnlineMeanErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState); PrognosisTestMeanError = errorState == OnlineCalculatorError.None ? testME : double.NaN; PrognosisTestDirectionalSymmetry = OnlineDirectionalSymmetryCalculator.Calculate(testStartValues, testTargetValues, testEstimatedValues, out errorState); PrognosisTestDirectionalSymmetry = errorState == OnlineCalculatorError.None ? PrognosisTestDirectionalSymmetry : 0.0; PrognosisTestWeightedDirectionalSymmetry = OnlineWeightedDirectionalSymmetryCalculator.Calculate(testStartValues, testTargetValues, testEstimatedValues, out errorState); PrognosisTestWeightedDirectionalSymmetry = errorState == OnlineCalculatorError.None ? PrognosisTestWeightedDirectionalSymmetry : 0.0; PrognosisTestTheilsUStatisticAR1 = OnlineTheilsUStatisticCalculator.Calculate(testStartValues, testTargetValues, testAR1ModelPredictions, testEstimatedValues, out errorState); PrognosisTestTheilsUStatisticAR1 = errorState == OnlineCalculatorError.None ? PrognosisTestTheilsUStatisticAR1 : double.PositiveInfinity; PrognosisTestTheilsUStatisticMean = OnlineTheilsUStatisticCalculator.Calculate(testStartValues, testTargetValues, testMeanModelPredictions, testEstimatedValues, out errorState); PrognosisTestTheilsUStatisticMean = errorState == OnlineCalculatorError.None ? PrognosisTestTheilsUStatisticMean : double.PositiveInfinity; PrognosisTestTheilsUStatisticMovingAverage = OnlineTheilsUStatisticCalculator.Calculate(testStartValues, testTargetValues, testMovingAverageModelPredictions, testEstimatedValues, out errorState); PrognosisTestTheilsUStatisticMovingAverage = errorState == OnlineCalculatorError.None ? PrognosisTestTheilsUStatisticMovingAverage : double.PositiveInfinity; } #endregion } } }