#region License Information /* HeuristicLab * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis { [StorableClass] [Item("Moveing Average TimeSeries Model", "A moving average time series model used to predict future values.")] public class TimeSeriesPrognosisMovingAverageModel : NamedItem, ITimeSeriesPrognosisModel { [Storable] public string TargetVariable { get; private set; } [Storable] public int WindowSize { get; private set; } [StorableConstructor] protected TimeSeriesPrognosisMovingAverageModel(bool deserializing) : base(deserializing) { } protected TimeSeriesPrognosisMovingAverageModel(TimeSeriesPrognosisMovingAverageModel original, Cloner cloner) : base(original, cloner) { this.TargetVariable = original.TargetVariable; this.WindowSize = original.WindowSize; } public override IDeepCloneable Clone(Cloner cloner) { return new TimeSeriesPrognosisMovingAverageModel(this, cloner); } public TimeSeriesPrognosisMovingAverageModel(int windowSize, string targetVariable) : base() { TargetVariable = targetVariable; WindowSize = Math.Abs(windowSize); } public IEnumerable> GetPrognosedValues(Dataset dataset, IEnumerable rows, IEnumerable horizons) { var rowsEnumerator = rows.GetEnumerator(); var horizonsEnumerator = horizons.GetEnumerator(); // produce a n-step forecast for all rows while (rowsEnumerator.MoveNext() & horizonsEnumerator.MoveNext()) { int row = rowsEnumerator.Current; int horizon = horizonsEnumerator.Current; int startIndex = row - WindowSize; if (startIndex < 0) startIndex = 0; int count = row - startIndex - 1; List targetValues = dataset.GetDoubleValues(TargetVariable, Enumerable.Range(startIndex, count)).ToList(); int position = 0; for (int i = 0; i < horizon; i++) { double prognosis = targetValues.GetRange(position, count).Average(); targetValues.Add(prognosis); if (count < WindowSize) count++; else position++; } yield return targetValues.GetRange(targetValues.Count - horizon, horizon); } if (rowsEnumerator.MoveNext() || horizonsEnumerator.MoveNext()) throw new ArgumentException("Number of elements in rows and horizon enumerations doesn't match."); } public IEnumerable GetEstimatedValues(Dataset dataset, IEnumerable rows) { return GetPrognosedValues(dataset, rows, rows.Select(r => 1)).SelectMany(e => e); } public IEnumerable GetEstimatedValues(Dataset dataset, IEnumerable rows, int x) { var targetValues = dataset.GetReadOnlyDoubleValues(TargetVariable).ToList(); foreach (int row in rows) { yield return targetValues.GetRange(row - WindowSize, WindowSize).Average(); } } public ITimeSeriesPrognosisSolution CreateTimeSeriesPrognosisSolution(ITimeSeriesPrognosisProblemData problemData) { return new TimeSeriesPrognosisSolution(this, problemData); } public IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) { throw new NotSupportedException(); } } }