#region License Information
/* HeuristicLab
* Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Windows.Forms;
using HeuristicLab.Data;
using HeuristicLab.Data.Views;
using HeuristicLab.MainForm;
using HeuristicLab.MainForm.WindowsForms;
namespace HeuristicLab.Problems.DataAnalysis.Views {
[View("Estimated Values")]
[Content(typeof(ITimeSeriesPrognosisSolution))]
public partial class TimeSeriesPrognosisSolutionEstimatedValuesView : DataAnalysisSolutionEvaluationView {
private const string TARGETVARIABLE_SERIES_NAME = "Target Variable";
private const string PROGNOSEDVALUES_TRAINING_SERIES_NAME = "Prognosed Values (training)";
private const string PROGNOSEDVALUES_TEST_SERIES_NAME = "Prognosed Values (test)";
public new ITimeSeriesPrognosisSolution Content {
get { return (ITimeSeriesPrognosisSolution)base.Content; }
set {
base.Content = value;
}
}
private StringConvertibleMatrixView matrixView;
public TimeSeriesPrognosisSolutionEstimatedValuesView()
: base() {
InitializeComponent();
matrixView = new StringConvertibleMatrixView();
matrixView.ShowRowsAndColumnsTextBox = false;
matrixView.ShowStatisticalInformation = false;
matrixView.Dock = DockStyle.Fill;
this.Controls.Add(matrixView);
}
#region events
protected override void RegisterContentEvents() {
base.RegisterContentEvents();
Content.ModelChanged += new EventHandler(Content_ModelChanged);
Content.ProblemDataChanged += new EventHandler(Content_ProblemDataChanged);
}
protected override void DeregisterContentEvents() {
base.DeregisterContentEvents();
Content.ModelChanged -= new EventHandler(Content_ModelChanged);
Content.ProblemDataChanged -= new EventHandler(Content_ProblemDataChanged);
}
private void Content_ProblemDataChanged(object sender, EventArgs e) {
OnContentChanged();
}
private void Content_ModelChanged(object sender, EventArgs e) {
OnContentChanged();
}
protected override void OnContentChanged() {
base.OnContentChanged();
UpdateEstimatedValues();
}
private void UpdateEstimatedValues() {
if (InvokeRequired) Invoke((Action)UpdateEstimatedValues);
else {
StringMatrix matrix = null;
List columnNames = new List();
if (Content != null) {
columnNames.Add("Id");
string[,] values = new string[Content.ProblemData.Dataset.Rows, 1 + 3 * Content.ProblemData.TargetVariables.Count()];
foreach (var row in Enumerable.Range(0, Content.ProblemData.Dataset.Rows))
values[row, 0] = row.ToString();
var allPrognosedTraining = Content.PrognosedTrainingValues.SelectMany(x=>x).ToArray();
var allPrognosedTest = Content.PrognosedTestValues.SelectMany(x => x).ToArray();
int i = 0;
int targetVariableIndex = 0;
foreach (var targetVariable in Content.ProblemData.TargetVariables) {
var prognosedTraining =
allPrognosedTraining.Skip(targetVariableIndex).TakeEvery(Content.ProblemData.TargetVariables.Count());
var prognosedTest =
allPrognosedTest.Skip(targetVariableIndex).TakeEvery(Content.ProblemData.TargetVariables.Count());
double[] target = Content.ProblemData.Dataset.GetDoubleValues(targetVariable).ToArray();
var prognosedTrainingEnumerator = prognosedTraining.GetEnumerator();
foreach (var row in Content.ProblemData.TrainingIndizes) {
prognosedTrainingEnumerator.MoveNext();
values[row, i + 2] = prognosedTrainingEnumerator.Current.ToString();
}
var prognosedTestEnumerator = prognosedTest.GetEnumerator();
foreach (var row in Content.ProblemData.TestIndizes) {
prognosedTestEnumerator.MoveNext();
values[row, i + 3] = prognosedTestEnumerator.Current.ToString();
}
foreach (var row in Enumerable.Range(0, Content.ProblemData.Dataset.Rows)) {
values[row, i + 1] = target[row].ToString();
}
columnNames.AddRange(new string[] { targetVariable + "(actual)", targetVariable + "(training)", targetVariable + "(test)" });
i += 3;
targetVariableIndex++;
} // foreach
matrix = new StringMatrix(values);
matrix.ColumnNames = columnNames.ToArray();
matrix.SortableView = true;
} // if
matrixView.Content = matrix;
}
}
#endregion
}
}