#region License Information /* HeuristicLab * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Drawing; using System.Linq; using System.Windows.Forms; using System.Windows.Forms.DataVisualization.Charting; using HeuristicLab.Common; using HeuristicLab.MainForm; using HeuristicLab.MainForm.WindowsForms; namespace HeuristicLab.Problems.DataAnalysis.Views { [View("Line Chart")] [Content(typeof(ITimeSeriesPrognosisSolution))] public partial class TimeSeriesPrognosisSolutionLineChartView : DataAnalysisSolutionEvaluationView { private const string TARGETVARIABLE_SERIES_NAME = "Target Variable"; private const string PROGNOSEDVALUES_TRAINING_SERIES_NAME = "Prognosed Values (training)"; private const string PROGNOSEDVALUES_TEST_SERIES_NAME = "Prognosed Values (test)"; private const string PROGNOSEDVALUES_ALL_SERIES_NAME = "Prognosed Values (all samples)"; private int testPrognosisStart; public new ITimeSeriesPrognosisSolution Content { get { return (ITimeSeriesPrognosisSolution)base.Content; } set { base.Content = value; } } public TimeSeriesPrognosisSolutionLineChartView() : base() { InitializeComponent(); //configure axis this.chart.CustomizeAllChartAreas(); this.chart.ChartAreas[0].CursorX.IsUserSelectionEnabled = true; this.chart.ChartAreas[0].CursorX.Interval = 1; this.chart.ChartAreas[0].AxisX.ScaleView.Zoomable = true; this.chart.ChartAreas[0].AxisX.IsStartedFromZero = true; this.chart.ChartAreas[0].CursorY.IsUserSelectionEnabled = true; this.chart.ChartAreas[0].CursorY.Interval = 0.1; this.chart.ChartAreas[0].AxisY.ScaleView.Zoomable = true; this.chart.SuppressExceptions = false; } private void RedrawChart() { this.chart.Series.Clear(); if (Content != null) { this.chart.ChartAreas[0].AxisX.Minimum = 0; this.chart.ChartAreas[0].AxisX.Maximum = Content.ProblemData.Dataset.Rows - 1; string targetVariable = Content.ProblemData.TargetVariable; this.chart.Series.Add(TARGETVARIABLE_SERIES_NAME); this.chart.Series[TARGETVARIABLE_SERIES_NAME].LegendText = targetVariable; this.chart.Series[TARGETVARIABLE_SERIES_NAME].ChartType = SeriesChartType.FastLine; AddDataPoints(chart.Series[TARGETVARIABLE_SERIES_NAME].Points, Enumerable.Range(0, Content.ProblemData.Dataset.Rows), Content.ProblemData.Dataset.GetDoubleValues(targetVariable)); //this.chart.Series[TARGETVARIABLE_SERIES_NAME].Points.DataBindXY(Enumerable.Range(0, Content.ProblemData.Dataset.Rows).ToArray(), // Content.ProblemData.Dataset.GetDoubleValues(targetVariable).ToArray()); this.chart.Series.Add(PROGNOSEDVALUES_TRAINING_SERIES_NAME); this.chart.Series[PROGNOSEDVALUES_TRAINING_SERIES_NAME].LegendText = PROGNOSEDVALUES_TRAINING_SERIES_NAME; this.chart.Series[PROGNOSEDVALUES_TRAINING_SERIES_NAME].ChartType = SeriesChartType.FastLine; if (prognosedValuesCheckbox.Checked) { //this.chart.Series[PROGNOSEDVALUES_TRAINING_SERIES_NAME].Points // .DataBindXY(Content.ProblemData.TrainingIndices.ToArray(), // Content.GetPrognosedValues(Content.ProblemData.TrainingIndices.Take(1), Content.ProblemData.TrainingIndices.Count().ToEnumerable()).First().ToArray()); AddDataPoints(chart.Series[PROGNOSEDVALUES_TRAINING_SERIES_NAME].Points, Content.ProblemData.TrainingIndices, Content.GetPrognosedValues(Content.ProblemData.TrainingIndices.Take(1), Content.ProblemData.TrainingIndices.Count().ToEnumerable()).First()); } else { //this.chart.Series[PROGNOSEDVALUES_TRAINING_SERIES_NAME].Points // .DataBindXY(Content.ProblemData.TrainingIndices.ToArray(), // Content.GetPrognosedValues(Content.ProblemData.TrainingIndices, Enumerable.Repeat(1, Content.ProblemData.TrainingIndices.Count())).SelectMany(x => x).ToArray()); AddDataPoints(chart.Series[PROGNOSEDVALUES_TRAINING_SERIES_NAME].Points, Content.ProblemData.TrainingIndices, Content.GetPrognosedValues(Content.ProblemData.TrainingIndices, Enumerable.Repeat(1, Content.ProblemData.TrainingIndices.Count())).SelectMany(x => x)); } this.chart.Series[PROGNOSEDVALUES_TRAINING_SERIES_NAME].Tag = Content; this.chart.DataManipulator.InsertEmptyPoints(1, IntervalType.Number, PROGNOSEDVALUES_TRAINING_SERIES_NAME); this.chart.Series[PROGNOSEDVALUES_TRAINING_SERIES_NAME].EmptyPointStyle.BorderWidth = 0; this.chart.Series[PROGNOSEDVALUES_TRAINING_SERIES_NAME].EmptyPointStyle.MarkerStyle = MarkerStyle.None; this.chart.Series.Add(PROGNOSEDVALUES_TEST_SERIES_NAME); this.chart.Series[PROGNOSEDVALUES_TEST_SERIES_NAME].LegendText = PROGNOSEDVALUES_TEST_SERIES_NAME; this.chart.Series[PROGNOSEDVALUES_TEST_SERIES_NAME].ChartType = SeriesChartType.FastLine; if (prognosedValuesCheckbox.Checked) { //this.chart.Series[PROGNOSEDVALUES_TEST_SERIES_NAME].Points // .DataBindXY(Content.ProblemData.TestIndices.ToArray(), // Content.GetPrognosedValues(Content.ProblemData.TestIndices.Take(1), Content.ProblemData.TestIndices.Count().ToEnumerable()).First().ToArray()); AddDataPoints(chart.Series[PROGNOSEDVALUES_TEST_SERIES_NAME].Points, Content.ProblemData.TestIndices, Content.GetPrognosedValues(Content.ProblemData.TestIndices.Take(1), Content.ProblemData.TestIndices.Count().ToEnumerable()).First()); } else { //this.chart.Series[PROGNOSEDVALUES_TEST_SERIES_NAME].Points // .DataBindXY(Content.ProblemData.TestIndices.ToArray(), // Content.GetPrognosedValues(Content.ProblemData.TestIndices, Enumerable.Repeat(1, Content.ProblemData.TestIndices.Count())).SelectMany(x => x).ToArray()); AddDataPoints(chart.Series[PROGNOSEDVALUES_TEST_SERIES_NAME].Points, Content.ProblemData.TestIndices, Content.GetPrognosedValues(Content.ProblemData.TestIndices, Enumerable.Repeat(1, Content.ProblemData.TestIndices.Count())).SelectMany(x => x)); } this.chart.Series[PROGNOSEDVALUES_TEST_SERIES_NAME].Tag = Content; UpdateCursorInterval(); this.UpdateStripLines(); } chart.Refresh(); } private void AddDataPoints(DataPointCollection points, IEnumerable xValues, IEnumerable yValues) { var xValuesEnumerator = xValues.GetEnumerator(); var yValuesEnumerator = yValues.GetEnumerator(); while (xValuesEnumerator.MoveNext() & yValuesEnumerator.MoveNext()) { var xValue = xValuesEnumerator.Current; var yValue = yValuesEnumerator.Current; if (yValue < (double)decimal.MaxValue && yValue > (double)decimal.MinValue) { DataPoint dataPoint = new DataPoint(xValue, yValue); points.Add(dataPoint); } } } private void UpdateCursorInterval() { var estimatedValues = this.chart.Series[PROGNOSEDVALUES_TRAINING_SERIES_NAME].Points.Select(x => x.YValues[0]).DefaultIfEmpty(1.0); var targetValues = this.chart.Series[TARGETVARIABLE_SERIES_NAME].Points.Select(x => x.YValues[0]).DefaultIfEmpty(1.0); double estimatedValuesRange = estimatedValues.Max() - estimatedValues.Min(); double targetValuesRange = targetValues.Max() - targetValues.Min(); double interestingValuesRange = Math.Min(Math.Max(targetValuesRange, 1.0), Math.Max(estimatedValuesRange, 1.0)); double digits = (int)Math.Log10(interestingValuesRange) - 3; double yZoomInterval = Math.Max(Math.Pow(10, digits), 10E-5); this.chart.ChartAreas[0].CursorY.Interval = yZoomInterval; } #region events protected override void RegisterContentEvents() { base.RegisterContentEvents(); Content.ModelChanged += new EventHandler(Content_ModelChanged); Content.ProblemDataChanged += new EventHandler(Content_ProblemDataChanged); } protected override void DeregisterContentEvents() { base.DeregisterContentEvents(); Content.ModelChanged -= new EventHandler(Content_ModelChanged); Content.ProblemDataChanged -= new EventHandler(Content_ProblemDataChanged); } protected override void OnContentChanged() { base.OnContentChanged(); RedrawChart(); } private void Content_ProblemDataChanged(object sender, EventArgs e) { RedrawChart(); } private void Content_ModelChanged(object sender, EventArgs e) { RedrawChart(); } private void targetVariableComboBox_SelectedIndexChanged(object sender, EventArgs e) { RedrawChart(); } private void prognosedValuesCheckbox_CheckedChanged(object sender, EventArgs e) { RedrawChart(); } private void Chart_MouseDoubleClick(object sender, MouseEventArgs e) { HitTestResult result = chart.HitTest(e.X, e.Y); if (result.ChartArea != null && (result.ChartElementType == ChartElementType.PlottingArea || result.ChartElementType == ChartElementType.Gridlines) || result.ChartElementType == ChartElementType.StripLines) { foreach (var axis in result.ChartArea.Axes) axis.ScaleView.ZoomReset(int.MaxValue); } } #endregion private void UpdateStripLines() { this.chart.ChartAreas[0].AxisX.StripLines.Clear(); int[] attr = new int[Content.ProblemData.Dataset.Rows + 1]; // add a virtual last row that is again empty to simplify loop further down foreach (var row in Content.ProblemData.TrainingIndices) { attr[row] += 1; } foreach (var row in Content.ProblemData.TestIndices) { attr[row] += 2; } int start = 0; int curAttr = attr[start]; for (int row = 0; row < attr.Length; row++) { if (attr[row] != curAttr) { switch (curAttr) { case 0: break; case 1: this.CreateAndAddStripLine("Training", start, row, Color.FromArgb(40, Color.Green), Color.Transparent); break; case 2: this.CreateAndAddStripLine("Test", start, row, Color.FromArgb(40, Color.Red), Color.Transparent); break; case 3: this.CreateAndAddStripLine("Training and Test", start, row, Color.FromArgb(40, Color.Green), Color.FromArgb(40, Color.Red), ChartHatchStyle.WideUpwardDiagonal); break; default: throw new NotSupportedException(); } curAttr = attr[row]; start = row; } } } private void CreateAndAddStripLine(string title, int start, int end, Color color, Color secondColor, ChartHatchStyle hatchStyle = ChartHatchStyle.None) { StripLine stripLine = new StripLine(); stripLine.BackColor = color; stripLine.BackSecondaryColor = secondColor; stripLine.BackHatchStyle = hatchStyle; stripLine.Text = title; stripLine.Font = new Font("Times New Roman", 12, FontStyle.Bold); // strip range is [start .. end] inclusive, but we evaluate [start..end[ (end is exclusive) // the strip should be by one longer (starting at start - 0.5 and ending at end + 0.5) stripLine.StripWidth = end - start; stripLine.IntervalOffset = start - 0.5; // start slightly to the left of the first point to clearly indicate the first point in the partition this.chart.ChartAreas[0].AxisX.StripLines.Add(stripLine); } private void ToggleSeriesData(Series series) { if (series.Points.Count > 0) { //checks if series is shown if (this.chart.Series.Any(s => s != series && s.Points.Count > 0)) { series.Points.Clear(); } } else if (Content != null) { IEnumerable Indices = null; IEnumerable predictedValues = null; switch (series.Name) { case PROGNOSEDVALUES_TRAINING_SERIES_NAME: Indices = Content.ProblemData.TrainingIndices.ToArray(); predictedValues = Content.GetPrognosedValues(Content.ProblemData.TrainingIndices.Take(1), Content.ProblemData.TrainingPartition.Size.ToEnumerable()).First(); break; case PROGNOSEDVALUES_TEST_SERIES_NAME: testPrognosisStart = Content.ProblemData.TestPartition.Start; Indices = Content.ProblemData.TestIndices.ToArray(); predictedValues = Content.GetPrognosedValues(Content.ProblemData.TestIndices.Take(1), Content.ProblemData.TestPartition.Size.ToEnumerable()).First(); break; } series.Points.DataBindXY(Indices, predictedValues); chart.DataManipulator.InsertEmptyPoints(1, IntervalType.Number, series.Name); chart.Legends[series.Legend].ForeColor = Color.Black; UpdateCursorInterval(); chart.Refresh(); } } private void chart_MouseMove(object sender, MouseEventArgs e) { //HitTestResult result = chart.HitTest(e.X, e.Y); //if (result.ChartElementType == ChartElementType.LegendItem && result.Series.Name != TARGETVARIABLE_SERIES_NAME) // Cursor = Cursors.Hand; //else // Cursor = Cursors.Default; } private void chart_MouseDown(object sender, MouseEventArgs e) { //HitTestResult result = chart.HitTest(e.X, e.Y); //if (result.ChartElementType == ChartElementType.LegendItem && result.Series.Name != TARGETVARIABLE_SERIES_NAME) { // ToggleSeriesData(result.Series); //} else if (result.ChartElementType == ChartElementType.Axis || result.ChartElementType == ChartElementType.AxisLabels || // result.ChartElementType == ChartElementType.TickMarks) { // chart.ChartAreas[0].CursorX.SetCursorPixelPosition(new Point(e.X, e.Y), true); // int pos = (int)Math.Round(chart.ChartAreas[0].CursorX.Position); // if (pos >= Content.ProblemData.TestPartition.Start && pos < Content.ProblemData.TestPartition.End) { // testPrognosisStart = pos; // RedrawChart(); // } //} } private void chart_CustomizeLegend(object sender, CustomizeLegendEventArgs e) { if (chart.Series.Count != 4) return; e.LegendItems[0].Cells[1].ForeColor = this.chart.Series[TARGETVARIABLE_SERIES_NAME].Points.Count == 0 ? Color.Gray : Color.Black; e.LegendItems[1].Cells[1].ForeColor = this.chart.Series[PROGNOSEDVALUES_TRAINING_SERIES_NAME].Points.Count == 0 ? Color.Gray : Color.Black; e.LegendItems[2].Cells[1].ForeColor = this.chart.Series[PROGNOSEDVALUES_TEST_SERIES_NAME].Points.Count == 0 ? Color.Gray : Color.Black; e.LegendItems[3].Cells[1].ForeColor = this.chart.Series[PROGNOSEDVALUES_ALL_SERIES_NAME].Points.Count == 0 ? Color.Gray : Color.Black; } } }