#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Reflection;
using System.Reflection.Emit;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
[StorableClass]
[Item("SymbolicDataAnalysisExpressionTreeILEmittingInterpreter", "Interpreter for symbolic expression trees.")]
public sealed class SymbolicDataAnalysisExpressionTreeILEmittingInterpreter : ParameterizedNamedItem, ISymbolicDataAnalysisExpressionTreeInterpreter {
private static MethodInfo listGetValue = typeof(IList).GetProperty("Item", new Type[] { typeof(int) }).GetGetMethod();
private static MethodInfo cos = typeof(Math).GetMethod("Cos", new Type[] { typeof(double) });
private static MethodInfo sin = typeof(Math).GetMethod("Sin", new Type[] { typeof(double) });
private static MethodInfo tan = typeof(Math).GetMethod("Tan", new Type[] { typeof(double) });
private static MethodInfo exp = typeof(Math).GetMethod("Exp", new Type[] { typeof(double) });
private static MethodInfo log = typeof(Math).GetMethod("Log", new Type[] { typeof(double) });
private static MethodInfo power = typeof(Math).GetMethod("Pow", new Type[] { typeof(double), typeof(double) });
private static MethodInfo round = typeof(Math).GetMethod("Round", new Type[] { typeof(double) });
internal delegate double CompiledFunction(int sampleIndex, IList[] columns, IList[] cachedValues, int cacheStartIndex);
private const string CheckExpressionsWithIntervalArithmeticParameterName = "CheckExpressionsWithIntervalArithmetic";
private const string EvaluatedSolutionsParameterName = "EvaluatedSolutions";
#region private classes
private class InterpreterState {
private Instruction[] code;
private int pc;
public int ProgramCounter {
get { return pc; }
set { pc = value; }
}
private bool inLaggedContext;
public bool InLaggedContext {
get { return inLaggedContext; }
set { inLaggedContext = value; }
}
internal InterpreterState(Instruction[] code) {
this.inLaggedContext = false;
this.code = code;
this.pc = 0;
}
internal Instruction NextInstruction() {
return code[pc++];
}
}
private class OpCodes {
public const byte Add = 1;
public const byte Sub = 2;
public const byte Mul = 3;
public const byte Div = 4;
public const byte Sin = 5;
public const byte Cos = 6;
public const byte Tan = 7;
public const byte Log = 8;
public const byte Exp = 9;
public const byte IfThenElse = 10;
public const byte GT = 11;
public const byte LT = 12;
public const byte AND = 13;
public const byte OR = 14;
public const byte NOT = 15;
public const byte Average = 16;
public const byte Call = 17;
public const byte Variable = 18;
public const byte LagVariable = 19;
public const byte Constant = 20;
public const byte Arg = 21;
public const byte Power = 22;
public const byte Root = 23;
public const byte TimeLag = 24;
public const byte Integral = 25;
public const byte Derivative = 26;
public const byte VariableCondition = 27;
}
#endregion
private Dictionary symbolToOpcode = new Dictionary() {
{ typeof(Addition), OpCodes.Add },
{ typeof(Subtraction), OpCodes.Sub },
{ typeof(Multiplication), OpCodes.Mul },
{ typeof(Division), OpCodes.Div },
{ typeof(Sine), OpCodes.Sin },
{ typeof(Cosine), OpCodes.Cos },
{ typeof(Tangent), OpCodes.Tan },
{ typeof(Logarithm), OpCodes.Log },
{ typeof(Exponential), OpCodes.Exp },
{ typeof(IfThenElse), OpCodes.IfThenElse },
{ typeof(GreaterThan), OpCodes.GT },
{ typeof(LessThan), OpCodes.LT },
{ typeof(And), OpCodes.AND },
{ typeof(Or), OpCodes.OR },
{ typeof(Not), OpCodes.NOT},
{ typeof(Average), OpCodes.Average},
{ typeof(InvokeFunction), OpCodes.Call },
{ typeof(HeuristicLab.Problems.DataAnalysis.Symbolic.Variable), OpCodes.Variable },
{ typeof(LaggedVariable), OpCodes.LagVariable },
{ typeof(Constant), OpCodes.Constant },
{ typeof(Argument), OpCodes.Arg },
{ typeof(Power),OpCodes.Power},
{ typeof(Root),OpCodes.Root},
{ typeof(TimeLag), OpCodes.TimeLag},
{ typeof(Integral), OpCodes.Integral},
{ typeof(Derivative), OpCodes.Derivative},
{ typeof(VariableCondition),OpCodes.VariableCondition}
};
public override bool CanChangeName {
get { return false; }
}
public override bool CanChangeDescription {
get { return false; }
}
#region parameter properties
public IValueParameter CheckExpressionsWithIntervalArithmeticParameter {
get { return (IValueParameter)Parameters[CheckExpressionsWithIntervalArithmeticParameterName]; }
}
public IValueParameter EvaluatedSolutionsParameter {
get { return (IValueParameter)Parameters[EvaluatedSolutionsParameterName]; }
}
#endregion
#region properties
public BoolValue CheckExpressionsWithIntervalArithmetic {
get { return CheckExpressionsWithIntervalArithmeticParameter.Value; }
set { CheckExpressionsWithIntervalArithmeticParameter.Value = value; }
}
public IntValue EvaluatedSolutions {
get { return EvaluatedSolutionsParameter.Value; }
set { EvaluatedSolutionsParameter.Value = value; }
}
#endregion
[StorableConstructor]
private SymbolicDataAnalysisExpressionTreeILEmittingInterpreter(bool deserializing) : base(deserializing) { }
private SymbolicDataAnalysisExpressionTreeILEmittingInterpreter(SymbolicDataAnalysisExpressionTreeILEmittingInterpreter original, Cloner cloner) : base(original, cloner) { }
public override IDeepCloneable Clone(Cloner cloner) {
return new SymbolicDataAnalysisExpressionTreeILEmittingInterpreter(this, cloner);
}
public SymbolicDataAnalysisExpressionTreeILEmittingInterpreter()
: base("SymbolicDataAnalysisExpressionTreeILEmittingInterpreter", "Interpreter for symbolic expression trees.") {
Parameters.Add(new ValueParameter(CheckExpressionsWithIntervalArithmeticParameterName, "Switch that determines if the interpreter checks the validity of expressions with interval arithmetic before evaluating the expression.", new BoolValue(false)));
Parameters.Add(new ValueParameter(EvaluatedSolutionsParameterName, "A counter for the total number of solutions the interpreter has evaluated", new IntValue(0)));
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
if (!Parameters.ContainsKey(EvaluatedSolutionsParameterName))
Parameters.Add(new ValueParameter(EvaluatedSolutionsParameterName, "A counter for the total number of solutions the interpreter has evaluated", new IntValue(0)));
}
#region IStatefulItem
public void InitializeState() {
EvaluatedSolutions.Value = 0;
}
public void ClearState() {
EvaluatedSolutions.Value = 0;
}
#endregion
public IEnumerable GetSymbolicExpressionTreeValues(ISymbolicExpressionTree tree, Dataset dataset, IEnumerable rows) {
return GetSymbolicExpressionTreeValues(tree, dataset, new string[] { "#NOTHING#" }, rows);
}
public IEnumerable GetSymbolicExpressionTreeValues(ISymbolicExpressionTree tree, Dataset dataset, string[] targetVariables, IEnumerable rows) {
return GetSymbolicExpressionTreeValues(tree, dataset, targetVariables, rows, 1);
}
// for each row for each horizon for each target variable one value
public IEnumerable GetSymbolicExpressionTreeValues(ISymbolicExpressionTree tree, Dataset dataset, string[] targetVariables, IEnumerable rows, int horizon) {
if (CheckExpressionsWithIntervalArithmetic.Value)
throw new NotSupportedException("Interval arithmetic is not yet supported in the symbolic data analysis interpreter.");
EvaluatedSolutions.Value++; // increment the evaluated solutions counter
var compiler = new SymbolicExpressionTreeCompiler();
Instruction[] code = compiler.Compile(tree, MapSymbolToOpCode);
int necessaryArgStackSize = 0;
Dictionary doubleVariableNames = dataset.DoubleVariables.Select((x, i) => new { x, i }).ToDictionary(e => e.x, e => e.i);
for (int i = 0; i < code.Length; i++) {
Instruction instr = code[i];
if (instr.opCode == OpCodes.Variable) {
var variableTreeNode = instr.dynamicNode as VariableTreeNode;
instr.iArg0 = doubleVariableNames[variableTreeNode.VariableName];
code[i] = instr;
} else if (instr.opCode == OpCodes.LagVariable) {
var variableTreeNode = instr.dynamicNode as LaggedVariableTreeNode;
instr.iArg0 = doubleVariableNames[variableTreeNode.VariableName];
code[i] = instr;
} else if (instr.opCode == OpCodes.VariableCondition) {
var variableConditionTreeNode = instr.dynamicNode as VariableConditionTreeNode;
instr.iArg0 = doubleVariableNames[variableConditionTreeNode.VariableName];
} else if (instr.opCode == OpCodes.Call) {
necessaryArgStackSize += instr.nArguments + 1;
}
}
var state = new InterpreterState(code);
Type[] methodArgs = { typeof(int), typeof(IList[]), typeof(IList[]), typeof(int) };
CompiledFunction[] function = new CompiledFunction[targetVariables.Length];
for (int i = 0; i < function.Length; i++) {
DynamicMethod testFun = new DynamicMethod("TestFun", typeof(double), methodArgs, typeof(SymbolicDataAnalysisExpressionTreeILEmittingInterpreter).Module);
ILGenerator il = testFun.GetILGenerator();
CompileInstructions(il, state, dataset);
il.Emit(System.Reflection.Emit.OpCodes.Conv_R8);
il.Emit(System.Reflection.Emit.OpCodes.Ret);
function[i] = (CompiledFunction)testFun.CreateDelegate(typeof(CompiledFunction));
}
var values = doubleVariableNames.Keys
.Select(v => dataset.GetReadOnlyDoubleValues(v))
.ToArray();
var cachedValues = (from var in doubleVariableNames.Keys
select new double[horizon]).ToArray();
foreach (var row in rows) {
// init first line of cache
int c = 0;
foreach (var var in doubleVariableNames.Keys)
cachedValues[c++][0] = dataset.GetDoubleValue(var, row);
for (int horizonRow = row; horizonRow < row + horizon; horizonRow++) {
for (int i = 0; i < function.Length; i++) {
var componentProg = function[i](horizonRow, values, cachedValues, row);
// set cachedValues for prognosis of future values
if (horizon > 1)
cachedValues[doubleVariableNames[targetVariables[i]]][horizonRow - row] = componentProg;
yield return componentProg;
}
}
}
}
private void CompileInstructions(ILGenerator il, InterpreterState state, Dataset ds) {
Instruction currentInstr = state.NextInstruction();
int nArgs = currentInstr.nArguments;
switch (currentInstr.opCode) {
case OpCodes.Add: {
if (nArgs > 0) {
CompileInstructions(il, state, ds);
}
for (int i = 1; i < nArgs; i++) {
CompileInstructions(il, state, ds);
il.Emit(System.Reflection.Emit.OpCodes.Add);
}
return;
}
case OpCodes.Sub: {
if (nArgs == 1) {
CompileInstructions(il, state, ds);
il.Emit(System.Reflection.Emit.OpCodes.Neg);
return;
}
if (nArgs > 0) {
CompileInstructions(il, state, ds);
}
for (int i = 1; i < nArgs; i++) {
CompileInstructions(il, state, ds);
il.Emit(System.Reflection.Emit.OpCodes.Sub);
}
return;
}
case OpCodes.Mul: {
if (nArgs > 0) {
CompileInstructions(il, state, ds);
}
for (int i = 1; i < nArgs; i++) {
CompileInstructions(il, state, ds);
il.Emit(System.Reflection.Emit.OpCodes.Mul);
}
return;
}
case OpCodes.Div: {
if (nArgs == 1) {
il.Emit(System.Reflection.Emit.OpCodes.Ldc_R8, 1.0);
CompileInstructions(il, state, ds);
il.Emit(System.Reflection.Emit.OpCodes.Div);
return;
}
if (nArgs > 0) {
CompileInstructions(il, state, ds);
}
for (int i = 1; i < nArgs; i++) {
CompileInstructions(il, state, ds);
il.Emit(System.Reflection.Emit.OpCodes.Div);
}
return;
}
case OpCodes.Average: {
CompileInstructions(il, state, ds);
for (int i = 1; i < nArgs; i++) {
CompileInstructions(il, state, ds);
il.Emit(System.Reflection.Emit.OpCodes.Add);
}
il.Emit(System.Reflection.Emit.OpCodes.Ldc_I4, nArgs);
il.Emit(System.Reflection.Emit.OpCodes.Div);
return;
}
case OpCodes.Cos: {
CompileInstructions(il, state, ds);
il.Emit(System.Reflection.Emit.OpCodes.Call, cos);
return;
}
case OpCodes.Sin: {
CompileInstructions(il, state, ds);
il.Emit(System.Reflection.Emit.OpCodes.Call, sin);
return;
}
case OpCodes.Tan: {
CompileInstructions(il, state, ds);
il.Emit(System.Reflection.Emit.OpCodes.Call, tan);
return;
}
case OpCodes.Power: {
CompileInstructions(il, state, ds);
CompileInstructions(il, state, ds);
il.Emit(System.Reflection.Emit.OpCodes.Call, round);
il.Emit(System.Reflection.Emit.OpCodes.Call, power);
return;
}
case OpCodes.Root: {
CompileInstructions(il, state, ds);
il.Emit(System.Reflection.Emit.OpCodes.Ldc_R8, 1.0); // 1 / round(...)
CompileInstructions(il, state, ds);
il.Emit(System.Reflection.Emit.OpCodes.Call, round);
il.Emit(System.Reflection.Emit.OpCodes.Div);
il.Emit(System.Reflection.Emit.OpCodes.Call, power);
return;
}
case OpCodes.Exp: {
CompileInstructions(il, state, ds);
il.Emit(System.Reflection.Emit.OpCodes.Call, exp);
return;
}
case OpCodes.Log: {
CompileInstructions(il, state, ds);
il.Emit(System.Reflection.Emit.OpCodes.Call, log);
return;
}
case OpCodes.IfThenElse: {
Label end = il.DefineLabel();
Label c1 = il.DefineLabel();
CompileInstructions(il, state, ds);
il.Emit(System.Reflection.Emit.OpCodes.Ldc_I4_0); // > 0
il.Emit(System.Reflection.Emit.OpCodes.Cgt);
il.Emit(System.Reflection.Emit.OpCodes.Brfalse, c1);
CompileInstructions(il, state, ds);
il.Emit(System.Reflection.Emit.OpCodes.Br, end);
il.MarkLabel(c1);
CompileInstructions(il, state, ds);
il.MarkLabel(end);
return;
}
case OpCodes.AND: {
Label falseBranch = il.DefineLabel();
Label end = il.DefineLabel();
CompileInstructions(il, state, ds);
for (int i = 1; i < nArgs; i++) {
il.Emit(System.Reflection.Emit.OpCodes.Ldc_I4_0); // > 0
il.Emit(System.Reflection.Emit.OpCodes.Cgt);
il.Emit(System.Reflection.Emit.OpCodes.Brfalse, falseBranch);
CompileInstructions(il, state, ds);
}
il.Emit(System.Reflection.Emit.OpCodes.Ldc_I4_0); // > 0
il.Emit(System.Reflection.Emit.OpCodes.Cgt);
il.Emit(System.Reflection.Emit.OpCodes.Brfalse, falseBranch);
il.Emit(System.Reflection.Emit.OpCodes.Ldc_R8, 1.0); // 1
il.Emit(System.Reflection.Emit.OpCodes.Br, end);
il.MarkLabel(falseBranch);
il.Emit(System.Reflection.Emit.OpCodes.Ldc_R8, 1.0); // -1
il.Emit(System.Reflection.Emit.OpCodes.Neg);
il.MarkLabel(end);
return;
}
case OpCodes.OR: {
Label trueBranch = il.DefineLabel();
Label end = il.DefineLabel();
Label resultBranch = il.DefineLabel();
CompileInstructions(il, state, ds);
for (int i = 1; i < nArgs; i++) {
Label nextArgBranch = il.DefineLabel();
// complex definition because of special properties of NaN
il.Emit(System.Reflection.Emit.OpCodes.Dup);
il.Emit(System.Reflection.Emit.OpCodes.Ldc_I4_0); // <= 0
il.Emit(System.Reflection.Emit.OpCodes.Ble, nextArgBranch);
il.Emit(System.Reflection.Emit.OpCodes.Br, resultBranch);
il.MarkLabel(nextArgBranch);
il.Emit(System.Reflection.Emit.OpCodes.Pop);
CompileInstructions(il, state, ds);
}
il.MarkLabel(resultBranch);
il.Emit(System.Reflection.Emit.OpCodes.Ldc_I4_0); // > 0
il.Emit(System.Reflection.Emit.OpCodes.Cgt);
il.Emit(System.Reflection.Emit.OpCodes.Brtrue, trueBranch);
il.Emit(System.Reflection.Emit.OpCodes.Ldc_R8, 1.0); // -1
il.Emit(System.Reflection.Emit.OpCodes.Neg);
il.Emit(System.Reflection.Emit.OpCodes.Br, end);
il.MarkLabel(trueBranch);
il.Emit(System.Reflection.Emit.OpCodes.Ldc_R8, 1.0); // 1
il.MarkLabel(end);
return;
}
case OpCodes.NOT: {
CompileInstructions(il, state, ds);
il.Emit(System.Reflection.Emit.OpCodes.Ldc_I4_0); // > 0
il.Emit(System.Reflection.Emit.OpCodes.Cgt);
il.Emit(System.Reflection.Emit.OpCodes.Ldc_R8, 2.0); // * 2
il.Emit(System.Reflection.Emit.OpCodes.Mul);
il.Emit(System.Reflection.Emit.OpCodes.Ldc_R8, 1.0); // - 1
il.Emit(System.Reflection.Emit.OpCodes.Sub);
il.Emit(System.Reflection.Emit.OpCodes.Neg); // * -1
return;
}
case OpCodes.GT: {
CompileInstructions(il, state, ds);
CompileInstructions(il, state, ds);
il.Emit(System.Reflection.Emit.OpCodes.Cgt); // 1 (>) / 0 (otherwise)
il.Emit(System.Reflection.Emit.OpCodes.Ldc_R8, 2.0); // * 2
il.Emit(System.Reflection.Emit.OpCodes.Mul);
il.Emit(System.Reflection.Emit.OpCodes.Ldc_R8, 1.0); // - 1
il.Emit(System.Reflection.Emit.OpCodes.Sub);
return;
}
case OpCodes.LT: {
CompileInstructions(il, state, ds);
CompileInstructions(il, state, ds);
il.Emit(System.Reflection.Emit.OpCodes.Clt);
il.Emit(System.Reflection.Emit.OpCodes.Ldc_R8, 2.0); // * 2
il.Emit(System.Reflection.Emit.OpCodes.Mul);
il.Emit(System.Reflection.Emit.OpCodes.Ldc_R8, 1.0); // - 1
il.Emit(System.Reflection.Emit.OpCodes.Sub);
return;
}
case OpCodes.TimeLag: {
LaggedTreeNode laggedTreeNode = (LaggedTreeNode)currentInstr.dynamicNode;
il.Emit(System.Reflection.Emit.OpCodes.Ldarg_0); // row -= lag
il.Emit(System.Reflection.Emit.OpCodes.Ldc_I4, laggedTreeNode.Lag);
il.Emit(System.Reflection.Emit.OpCodes.Add);
il.Emit(System.Reflection.Emit.OpCodes.Starg, 0);
var prevLaggedContext = state.InLaggedContext;
state.InLaggedContext = true;
CompileInstructions(il, state, ds);
il.Emit(System.Reflection.Emit.OpCodes.Ldarg_0); // row += lag
il.Emit(System.Reflection.Emit.OpCodes.Ldc_I4, laggedTreeNode.Lag);
il.Emit(System.Reflection.Emit.OpCodes.Sub);
il.Emit(System.Reflection.Emit.OpCodes.Starg, 0);
state.InLaggedContext = prevLaggedContext;
return;
}
case OpCodes.Integral: {
int savedPc = state.ProgramCounter;
LaggedTreeNode laggedTreeNode = (LaggedTreeNode)currentInstr.dynamicNode;
il.Emit(System.Reflection.Emit.OpCodes.Ldarg_0); // row -= lag
il.Emit(System.Reflection.Emit.OpCodes.Ldc_I4, laggedTreeNode.Lag);
il.Emit(System.Reflection.Emit.OpCodes.Add);
il.Emit(System.Reflection.Emit.OpCodes.Starg, 0);
var prevLaggedContext = state.InLaggedContext;
state.InLaggedContext = true;
CompileInstructions(il, state, ds);
for (int l = laggedTreeNode.Lag; l < 0; l++) {
il.Emit(System.Reflection.Emit.OpCodes.Ldarg_0); // row += lag
il.Emit(System.Reflection.Emit.OpCodes.Ldc_I4_1);
il.Emit(System.Reflection.Emit.OpCodes.Add);
il.Emit(System.Reflection.Emit.OpCodes.Starg, 0);
state.ProgramCounter = savedPc;
CompileInstructions(il, state, ds);
il.Emit(System.Reflection.Emit.OpCodes.Add);
}
state.InLaggedContext = prevLaggedContext;
return;
}
//mkommend: derivate calculation taken from:
//http://www.holoborodko.com/pavel/numerical-methods/numerical-derivative/smooth-low-noise-differentiators/
//one sided smooth differentiatior, N = 4
// y' = 1/8h (f_i + 2f_i-1, -2 f_i-3 - f_i-4)
case OpCodes.Derivative: {
int savedPc = state.ProgramCounter;
CompileInstructions(il, state, ds);
il.Emit(System.Reflection.Emit.OpCodes.Ldarg_0); // row --
il.Emit(System.Reflection.Emit.OpCodes.Ldc_I4_M1);
il.Emit(System.Reflection.Emit.OpCodes.Add);
il.Emit(System.Reflection.Emit.OpCodes.Starg, 0);
state.ProgramCounter = savedPc;
var prevLaggedContext = state.InLaggedContext;
state.InLaggedContext = true;
CompileInstructions(il, state, ds);
il.Emit(System.Reflection.Emit.OpCodes.Ldc_R8, 2.0); // f_0 + 2 * f_1
il.Emit(System.Reflection.Emit.OpCodes.Mul);
il.Emit(System.Reflection.Emit.OpCodes.Add);
il.Emit(System.Reflection.Emit.OpCodes.Ldarg_0); // row -=2
il.Emit(System.Reflection.Emit.OpCodes.Ldc_I4_2);
il.Emit(System.Reflection.Emit.OpCodes.Sub);
il.Emit(System.Reflection.Emit.OpCodes.Starg, 0);
state.ProgramCounter = savedPc;
CompileInstructions(il, state, ds);
il.Emit(System.Reflection.Emit.OpCodes.Ldc_R8, 2.0); // f_0 + 2 * f_1 - 2 * f_3
il.Emit(System.Reflection.Emit.OpCodes.Mul);
il.Emit(System.Reflection.Emit.OpCodes.Sub);
il.Emit(System.Reflection.Emit.OpCodes.Ldarg_0); // row --
il.Emit(System.Reflection.Emit.OpCodes.Ldc_I4_M1);
il.Emit(System.Reflection.Emit.OpCodes.Add);
il.Emit(System.Reflection.Emit.OpCodes.Starg, 0);
state.ProgramCounter = savedPc;
CompileInstructions(il, state, ds);
il.Emit(System.Reflection.Emit.OpCodes.Sub); // f_0 + 2 * f_1 - 2 * f_3 - f_4
il.Emit(System.Reflection.Emit.OpCodes.Ldc_R8, 8.0); // / 8
il.Emit(System.Reflection.Emit.OpCodes.Div);
il.Emit(System.Reflection.Emit.OpCodes.Ldarg_0); // row +=4
il.Emit(System.Reflection.Emit.OpCodes.Ldc_I4_4);
il.Emit(System.Reflection.Emit.OpCodes.Add);
il.Emit(System.Reflection.Emit.OpCodes.Starg, 0);
state.InLaggedContext = prevLaggedContext;
return;
}
case OpCodes.Call: {
throw new NotSupportedException("Automatically defined functions are not supported by the SymbolicDataAnalysisTreeILEmittingInterpreter. Either turn of ADFs or change the interpeter.");
}
case OpCodes.Arg: {
throw new NotSupportedException("Automatically defined functions are not supported by the SymbolicDataAnalysisTreeILEmittingInterpreter. Either turn of ADFs or change the interpeter.");
}
case OpCodes.Variable: {
VariableTreeNode varNode = (VariableTreeNode)currentInstr.dynamicNode;
if (!state.InLaggedContext) {
il.Emit(System.Reflection.Emit.OpCodes.Ldarg_1); // load columns array
il.Emit(System.Reflection.Emit.OpCodes.Ldc_I4, (int)currentInstr.iArg0);
// load correct column of the current variable
il.Emit(System.Reflection.Emit.OpCodes.Ldelem_Ref);
il.Emit(System.Reflection.Emit.OpCodes.Ldarg_0); // rowIndex
il.Emit(System.Reflection.Emit.OpCodes.Call, listGetValue);
il.Emit(System.Reflection.Emit.OpCodes.Ldc_R8, varNode.Weight); // load weight
il.Emit(System.Reflection.Emit.OpCodes.Mul);
} else {
var nanResult = il.DefineLabel();
var normalResult = il.DefineLabel();
var cachedValue = il.DefineLabel();
var multiplyValue = il.DefineLabel();
il.Emit(System.Reflection.Emit.OpCodes.Ldarg_0); // rowIndex
il.Emit(System.Reflection.Emit.OpCodes.Dup);
il.Emit(System.Reflection.Emit.OpCodes.Ldc_I4_0);
il.Emit(System.Reflection.Emit.OpCodes.Blt, nanResult);
il.Emit(System.Reflection.Emit.OpCodes.Dup);
il.Emit(System.Reflection.Emit.OpCodes.Ldc_I4, ds.Rows);
il.Emit(System.Reflection.Emit.OpCodes.Bge, nanResult);
il.Emit(System.Reflection.Emit.OpCodes.Ldarg_3);
il.Emit(System.Reflection.Emit.OpCodes.Bge, cachedValue);
il.Emit(System.Reflection.Emit.OpCodes.Ldarg_1); // load columns array
il.Emit(System.Reflection.Emit.OpCodes.Ldc_I4, (int)currentInstr.iArg0);
il.Emit(System.Reflection.Emit.OpCodes.Ldelem_Ref);
il.Emit(System.Reflection.Emit.OpCodes.Ldarg_0); // rowIndex
il.Emit(System.Reflection.Emit.OpCodes.Call, listGetValue);
il.Emit(System.Reflection.Emit.OpCodes.Br, multiplyValue);
il.MarkLabel(cachedValue);
il.Emit(System.Reflection.Emit.OpCodes.Ldarg_2); // load cached values array
il.Emit(System.Reflection.Emit.OpCodes.Ldc_I4, (int)currentInstr.iArg0);
il.Emit(System.Reflection.Emit.OpCodes.Ldelem_Ref);
il.Emit(System.Reflection.Emit.OpCodes.Ldarg_0); // rowIndex
il.Emit(System.Reflection.Emit.OpCodes.Ldarg_3); // startRow
il.Emit(System.Reflection.Emit.OpCodes.Sub); // startRow
il.Emit(System.Reflection.Emit.OpCodes.Call, listGetValue);
il.MarkLabel(multiplyValue);
il.Emit(System.Reflection.Emit.OpCodes.Ldc_R8, varNode.Weight); // load weight
il.Emit(System.Reflection.Emit.OpCodes.Mul);
il.Emit(System.Reflection.Emit.OpCodes.Br, normalResult);
il.MarkLabel(nanResult);
il.Emit(System.Reflection.Emit.OpCodes.Pop); // rowIndex
il.Emit(System.Reflection.Emit.OpCodes.Ldc_R8, double.NaN);
il.MarkLabel(normalResult);
}
return;
}
case OpCodes.LagVariable: {
var nanResult = il.DefineLabel();
var normalResult = il.DefineLabel();
var cachedValue = il.DefineLabel();
var multiplyValue = il.DefineLabel();
LaggedVariableTreeNode varNode = (LaggedVariableTreeNode)currentInstr.dynamicNode;
il.Emit(System.Reflection.Emit.OpCodes.Ldc_I4, varNode.Lag); // lag
il.Emit(System.Reflection.Emit.OpCodes.Ldarg_0); // rowIndex
il.Emit(System.Reflection.Emit.OpCodes.Add); // actualRowIndex = rowIndex + sampleOffset
il.Emit(System.Reflection.Emit.OpCodes.Dup);
il.Emit(System.Reflection.Emit.OpCodes.Ldc_I4_0);
il.Emit(System.Reflection.Emit.OpCodes.Blt, nanResult);
il.Emit(System.Reflection.Emit.OpCodes.Dup);
il.Emit(System.Reflection.Emit.OpCodes.Ldc_I4, ds.Rows);
il.Emit(System.Reflection.Emit.OpCodes.Bge, nanResult);
il.Emit(System.Reflection.Emit.OpCodes.Ldarg_3); // startindex
il.Emit(System.Reflection.Emit.OpCodes.Bge, cachedValue);
// normal value
il.Emit(System.Reflection.Emit.OpCodes.Ldarg_1); // load columns array
il.Emit(System.Reflection.Emit.OpCodes.Ldc_I4, (int)currentInstr.iArg0); // load correct column of the current variable
il.Emit(System.Reflection.Emit.OpCodes.Ldelem_Ref);
il.Emit(System.Reflection.Emit.OpCodes.Ldc_I4, varNode.Lag); // lag
il.Emit(System.Reflection.Emit.OpCodes.Ldarg_0); // rowIndex
il.Emit(System.Reflection.Emit.OpCodes.Add); // actualRowIndex = rowIndex + sampleOffset
il.Emit(System.Reflection.Emit.OpCodes.Call, listGetValue);
il.Emit(System.Reflection.Emit.OpCodes.Br, multiplyValue);
il.MarkLabel(cachedValue);
// cached value
il.Emit(System.Reflection.Emit.OpCodes.Ldarg_2); // load cached values
il.Emit(System.Reflection.Emit.OpCodes.Ldc_I4, (int)currentInstr.iArg0); // load correct column of the current variable
il.Emit(System.Reflection.Emit.OpCodes.Ldelem_Ref);
il.Emit(System.Reflection.Emit.OpCodes.Ldc_I4, varNode.Lag); // lag
il.Emit(System.Reflection.Emit.OpCodes.Ldarg_0); // rowIndex
il.Emit(System.Reflection.Emit.OpCodes.Add); // actualRowIndex = rowIndex + sampleOffset
il.Emit(System.Reflection.Emit.OpCodes.Ldarg_3); // startRow
il.Emit(System.Reflection.Emit.OpCodes.Sub); // startRow
il.Emit(System.Reflection.Emit.OpCodes.Call, listGetValue);
il.MarkLabel(multiplyValue);
il.Emit(System.Reflection.Emit.OpCodes.Ldc_R8, varNode.Weight); // load weight
il.Emit(System.Reflection.Emit.OpCodes.Mul);
il.Emit(System.Reflection.Emit.OpCodes.Br, normalResult);
il.MarkLabel(nanResult);
il.Emit(System.Reflection.Emit.OpCodes.Pop); // pop the row index
il.Emit(System.Reflection.Emit.OpCodes.Ldc_R8, double.NaN);
il.MarkLabel(normalResult);
return;
}
case OpCodes.Constant: {
ConstantTreeNode constNode = (ConstantTreeNode)currentInstr.dynamicNode;
il.Emit(System.Reflection.Emit.OpCodes.Ldc_R8, constNode.Value);
return;
}
//mkommend: this symbol uses the logistic function f(x) = 1 / (1 + e^(-alpha * x) )
//to determine the relative amounts of the true and false branch see http://en.wikipedia.org/wiki/Logistic_function
case OpCodes.VariableCondition: {
throw new NotSupportedException("Interpretation of symbol " + currentInstr.dynamicNode.Symbol.Name + " is not supported by the SymbolicDataAnalysisTreeILEmittingInterpreter");
}
default: throw new NotSupportedException("Interpretation of symbol " + currentInstr.dynamicNode.Symbol.Name + " is not supported by the SymbolicDataAnalysisTreeILEmittingInterpreter");
}
}
private byte MapSymbolToOpCode(ISymbolicExpressionTreeNode treeNode) {
if (symbolToOpcode.ContainsKey(treeNode.Symbol.GetType()))
return symbolToOpcode[treeNode.Symbol.GetType()];
else
throw new NotSupportedException("Symbol: " + treeNode.Symbol);
}
}
}