#region License Information
/* HeuristicLab
* Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis {
///
/// An operator that analyzes the validation best symbolic time-series prognosis solution for single objective symbolic time-series prognosis problems.
///
[Item("SymbolicTimeSeriesPrognosisSingleObjectiveValidationBestSolutionAnalyzer", "An operator that analyzes the validation best symbolic time-series prognosis solution for single objective symbolic time-series prognosis problems.")]
[StorableClass]
public sealed class SymbolicTimeSeriesPrognosisSingleObjectiveValidationBestSolutionAnalyzer : SymbolicDataAnalysisSingleObjectiveValidationBestSolutionAnalyzer, ISymbolicDataAnalysisBoundedOperator {
private const string EstimationLimitsParameterName = "EstimationLimits";
private const string ApplyLinearScalingParameterName = "ApplyLinearScaling";
#region parameter properties
public IValueLookupParameter EstimationLimitsParameter {
get { return (IValueLookupParameter)Parameters[EstimationLimitsParameterName]; }
}
public IValueParameter ApplyLinearScalingParameter {
get { return (IValueParameter)Parameters[ApplyLinearScalingParameterName]; }
}
#endregion
#region properties
public BoolValue ApplyLinearScaling {
get { return ApplyLinearScalingParameter.Value; }
}
#endregion
[StorableConstructor]
private SymbolicTimeSeriesPrognosisSingleObjectiveValidationBestSolutionAnalyzer(bool deserializing) : base(deserializing) { }
private SymbolicTimeSeriesPrognosisSingleObjectiveValidationBestSolutionAnalyzer(SymbolicTimeSeriesPrognosisSingleObjectiveValidationBestSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
public SymbolicTimeSeriesPrognosisSingleObjectiveValidationBestSolutionAnalyzer()
: base() {
Parameters.Add(new ValueLookupParameter(EstimationLimitsParameterName, "The lower and upper limit for the estimated values produced by the symbolic regression model."));
Parameters.Add(new ValueParameter(ApplyLinearScalingParameterName, "Flag that indicates if the produced symbolic regression solution should be linearly scaled.", new BoolValue(true)));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new SymbolicTimeSeriesPrognosisSingleObjectiveValidationBestSolutionAnalyzer(this, cloner);
}
protected override ISymbolicTimeSeriesPrognosisSolution CreateSolution(ISymbolicExpressionTree bestTree, double bestQuality) {
var model = new SymbolicTimeSeriesPrognosisModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue, ProblemDataParameter.ActualValue.TargetVariables.ToArray(), EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper);
if (ApplyLinearScaling.Value)
SymbolicTimeSeriesPrognosisModel.Scale(model, ProblemDataParameter.ActualValue);
return new SymbolicTimeSeriesPrognosisSolution(model, (ITimeSeriesPrognosisProblemData)ProblemDataParameter.ActualValue.Clone());
}
}
}