#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Linq;
using HeuristicLab.Analysis;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Operators;
using HeuristicLab.Optimization;
using HeuristicLab.Optimization.Operators;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.PluginInfrastructure;
using HeuristicLab.Random;
namespace HeuristicLab.Algorithms.ParticleSwarmOptimization {
[Item("Particle Swarm Optimization", "A particle swarm optimization algorithm based on the description in Pedersen, M.E.H. (2010). PhD thesis. University of Southampton.")]
[Creatable("Algorithms")]
[StorableClass]
public sealed class ParticleSwarmOptimization : HeuristicOptimizationEngineAlgorithm, IStorableContent {
#region Parameter Properties
public IValueParameter SeedParameter {
get { return (IValueParameter)Parameters["Seed"]; }
}
public IValueParameter SetSeedRandomlyParameter {
get { return (IValueParameter)Parameters["SetSeedRandomly"]; }
}
public IValueParameter SwarmSizeParameter {
get { return (IValueParameter)Parameters["SwarmSize"]; }
}
public IValueParameter MaxIterationsParameter {
get { return (IValueParameter)Parameters["MaxIterations"]; }
}
public IValueParameter InertiaParameter {
get { return (IValueParameter)Parameters["Inertia"]; }
}
public IValueParameter PersonalBestAttractionParameter {
get { return (IValueParameter)Parameters["PersonalBestAttraction"]; }
}
public IValueParameter NeighborBestAttractionParameter {
get { return (IValueParameter)Parameters["NeighborBestAttraction"]; }
}
public IValueParameter AnalyzerParameter {
get { return (IValueParameter)Parameters["Analyzer"]; }
}
public ConstrainedValueParameter ParticleCreatorParameter {
get { return (ConstrainedValueParameter)Parameters["ParticleCreator"]; }
}
public ConstrainedValueParameter ParticleUpdaterParameter {
get { return (ConstrainedValueParameter)Parameters["ParticleUpdater"]; }
}
public OptionalConstrainedValueParameter TopologyInitializerParameter {
get { return (OptionalConstrainedValueParameter)Parameters["TopologyInitializer"]; }
}
public OptionalConstrainedValueParameter TopologyUpdaterParameter {
get { return (OptionalConstrainedValueParameter)Parameters["TopologyUpdater"]; }
}
public OptionalConstrainedValueParameter InertiaUpdaterParameter {
get { return (OptionalConstrainedValueParameter)Parameters["InertiaUpdater"]; }
}
public ConstrainedValueParameter SwarmUpdaterParameter {
get { return (ConstrainedValueParameter)Parameters["SwarmUpdater"]; }
}
#endregion
#region Properties
public string Filename { get; set; }
[Storable]
private BestAverageWorstQualityAnalyzer qualityAnalyzer;
[Storable]
private SolutionsCreator solutionsCreator;
[Storable]
private ParticleSwarmOptimizationMainLoop mainLoop;
public override Type ProblemType {
get { return typeof(ISingleObjectiveHeuristicOptimizationProblem); }
}
public new ISingleObjectiveHeuristicOptimizationProblem Problem {
get { return (ISingleObjectiveHeuristicOptimizationProblem)base.Problem; }
set { base.Problem = value; }
}
public IntValue Seed {
get { return SeedParameter.Value; }
set { SeedParameter.Value = value; }
}
public BoolValue SetSeedRandomly {
get { return SetSeedRandomlyParameter.Value; }
set { SetSeedRandomlyParameter.Value = value; }
}
public IntValue SwarmSize {
get { return SwarmSizeParameter.Value; }
set { SwarmSizeParameter.Value = value; }
}
public IntValue MaxIterations {
get { return MaxIterationsParameter.Value; }
set { MaxIterationsParameter.Value = value; }
}
public DoubleValue Inertia {
get { return InertiaParameter.Value; }
set { InertiaParameter.Value = value; }
}
public DoubleValue PersonalBestAttraction {
get { return PersonalBestAttractionParameter.Value; }
set { PersonalBestAttractionParameter.Value = value; }
}
public DoubleValue NeighborBestAttraction {
get { return NeighborBestAttractionParameter.Value; }
set { NeighborBestAttractionParameter.Value = value; }
}
public MultiAnalyzer Analyzer {
get { return AnalyzerParameter.Value; }
set { AnalyzerParameter.Value = value; }
}
public IParticleCreator ParticleCreator {
get { return ParticleCreatorParameter.Value; }
set { ParticleCreatorParameter.Value = value; }
}
public IParticleUpdater ParticleUpdater {
get { return ParticleUpdaterParameter.Value; }
set { ParticleUpdaterParameter.Value = value; }
}
public ITopologyInitializer TopologyInitializer {
get { return TopologyInitializerParameter.Value; }
set { TopologyInitializerParameter.Value = value; }
}
public ITopologyUpdater TopologyUpdater {
get { return TopologyUpdaterParameter.Value; }
set { TopologyUpdaterParameter.Value = value; }
}
public IDiscreteDoubleValueModifier InertiaUpdater {
get { return InertiaUpdaterParameter.Value; }
set { InertiaUpdaterParameter.Value = value; }
}
public ISwarmUpdater SwarmUpdater {
get { return SwarmUpdaterParameter.Value; }
set { SwarmUpdaterParameter.Value = value; }
}
#endregion
[StorableConstructor]
private ParticleSwarmOptimization(bool deserializing) : base(deserializing) { }
private ParticleSwarmOptimization(ParticleSwarmOptimization original, Cloner cloner)
: base(original, cloner) {
qualityAnalyzer = cloner.Clone(original.qualityAnalyzer);
solutionsCreator = cloner.Clone(original.solutionsCreator);
mainLoop = cloner.Clone(original.mainLoop);
Initialize();
}
public ParticleSwarmOptimization()
: base() {
Parameters.Add(new ValueParameter("Seed", "The random seed used to initialize the new pseudo random number generator.", new IntValue(0)));
Parameters.Add(new ValueParameter("SetSeedRandomly", "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true)));
Parameters.Add(new ValueParameter("SwarmSize", "Size of the particle swarm.", new IntValue(10)));
Parameters.Add(new ValueParameter("MaxIterations", "Maximal number of iterations.", new IntValue(1000)));
Parameters.Add(new ValueParameter("Analyzer", "The operator used to analyze each generation.", new MultiAnalyzer()));
Parameters.Add(new ValueParameter("Inertia", "Inertia weight on a particle's movement (omega).", new DoubleValue(1)));
Parameters.Add(new ValueParameter("PersonalBestAttraction", "Weight for particle's pull towards its personal best soution (phi_p).", new DoubleValue(-0.01)));
Parameters.Add(new ValueParameter("NeighborBestAttraction", "Weight for pull towards the neighborhood best solution or global best solution in case of a totally connected topology (phi_g).", new DoubleValue(3.7)));
Parameters.Add(new ConstrainedValueParameter("ParticleCreator", "Operator that creates a new particle."));
Parameters.Add(new ConstrainedValueParameter("ParticleUpdater", "Operator that updates a particle."));
Parameters.Add(new OptionalConstrainedValueParameter("TopologyInitializer", "Creates neighborhood description vectors."));
Parameters.Add(new OptionalConstrainedValueParameter("TopologyUpdater", "Updates the neighborhood description vectors."));
Parameters.Add(new OptionalConstrainedValueParameter("InertiaUpdater", "Updates the omega parameter."));
Parameters.Add(new ConstrainedValueParameter("SwarmUpdater", "Encoding-specific parameter which is provided by the problem. May provide additional encoding-specific parameters, such as velocity bounds for real valued problems"));
ParticleUpdaterParameter.Hidden = true;
RandomCreator randomCreator = new RandomCreator();
VariableCreator variableCreator = new VariableCreator();
Assigner currentInertiaAssigner = new Assigner();
solutionsCreator = new SolutionsCreator();
SubScopesCounter subScopesCounter = new SubScopesCounter();
Placeholder topologyInitializerPlaceholder = new Placeholder();
mainLoop = new ParticleSwarmOptimizationMainLoop();
OperatorGraph.InitialOperator = randomCreator;
randomCreator.SetSeedRandomlyParameter.Value = null;
randomCreator.SeedParameter.Value = null;
randomCreator.Successor = variableCreator;
variableCreator.CollectedValues.Add(new ValueParameter("Iterations", new IntValue(0)));
variableCreator.Successor = currentInertiaAssigner;
currentInertiaAssigner.Name = "CurrentInertia := Inertia";
currentInertiaAssigner.LeftSideParameter.ActualName = "CurrentInertia";
currentInertiaAssigner.RightSideParameter.ActualName = "Inertia";
currentInertiaAssigner.Successor = solutionsCreator;
solutionsCreator.NumberOfSolutionsParameter.ActualName = "SwarmSize";
ParameterizeSolutionsCreator();
solutionsCreator.Successor = subScopesCounter;
subScopesCounter.Name = "Initialize EvaluatedSolutions";
subScopesCounter.ValueParameter.ActualName = "EvaluatedSolutions";
subScopesCounter.Successor = topologyInitializerPlaceholder;
topologyInitializerPlaceholder.Name = "(TopologyInitializer)";
topologyInitializerPlaceholder.OperatorParameter.ActualName = "TopologyInitializer";
topologyInitializerPlaceholder.Successor = mainLoop;
mainLoop.AnalyzerParameter.ActualName = AnalyzerParameter.Name;
mainLoop.InertiaParameter.ActualName = "CurrentInertia";
mainLoop.MaxIterationsParameter.ActualName = MaxIterationsParameter.Name;
mainLoop.NeighborBestAttractionParameter.ActualName = NeighborBestAttractionParameter.Name;
mainLoop.InertiaUpdaterParameter.ActualName = InertiaUpdaterParameter.Name;
mainLoop.ParticleUpdaterParameter.ActualName = ParticleUpdaterParameter.Name;
mainLoop.PersonalBestAttractionParameter.ActualName = PersonalBestAttractionParameter.Name;
mainLoop.RandomParameter.ActualName = randomCreator.RandomParameter.ActualName;
mainLoop.SwarmSizeParameter.ActualName = SwarmSizeParameter.Name;
mainLoop.TopologyUpdaterParameter.ActualName = TopologyUpdaterParameter.Name;
mainLoop.RandomParameter.ActualName = randomCreator.RandomParameter.ActualName;
mainLoop.ResultsParameter.ActualName = "Results";
InitializeAnalyzers();
InitializeParticleCreator();
InitializeSwarmUpdater();
ParameterizeSolutionsCreator();
UpdateAnalyzers();
UpdateInertiaUpdater();
InitInertiaUpdater();
UpdateTopologyInitializer();
Initialize();
ParameterizeMainLoop();
}
public override IDeepCloneable Clone(Cloner cloner) {
return new ParticleSwarmOptimization(this, cloner);
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
Initialize();
}
public override void Prepare() {
if (Problem != null && ParticleCreator != null && ParticleUpdater != null) {
base.Prepare();
}
}
#region Events
protected override void OnProblemChanged() {
UpdateAnalyzers();
ParameterizeAnalyzers();
UpdateTopologyParameters();
InitializeParticleCreator();
InitializeSwarmUpdater();
ParameterizeSolutionsCreator();
base.OnProblemChanged();
}
void TopologyInitializerParameter_ValueChanged(object sender, EventArgs e) {
this.UpdateTopologyParameters();
}
#endregion
#region Helpers
private void Initialize() {
TopologyInitializerParameter.ValueChanged += new EventHandler(TopologyInitializerParameter_ValueChanged);
}
private void InitializeParticleCreator() {
if (Problem != null) {
IParticleCreator oldParticleCreator = ParticleCreator;
ParticleCreatorParameter.ValidValues.Clear();
foreach (IParticleCreator Creator in Problem.Operators.OfType().OrderBy(x => x.Name)) {
ParticleCreatorParameter.ValidValues.Add(Creator);
}
if (oldParticleCreator != null) {
IParticleCreator creator = ParticleCreatorParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldParticleCreator.GetType());
if (creator != null) ParticleCreator = creator;
}
}
}
private void InitializeAnalyzers() {
qualityAnalyzer = new BestAverageWorstQualityAnalyzer();
qualityAnalyzer.ResultsParameter.ActualName = "Results";
ParameterizeAnalyzers();
}
private void ParameterizeAnalyzers() {
if (Problem != null) {
qualityAnalyzer.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name;
qualityAnalyzer.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName;
qualityAnalyzer.BestKnownQualityParameter.ActualName = Problem.BestKnownQualityParameter.Name;
}
}
private void UpdateAnalyzers() {
Analyzer.Operators.Clear();
if (Problem != null) {
foreach (IAnalyzer analyzer in Problem.Operators.OfType())
Analyzer.Operators.Add(analyzer, analyzer.EnabledByDefault);
}
Analyzer.Operators.Add(qualityAnalyzer, qualityAnalyzer.EnabledByDefault);
}
private void InitInertiaUpdater() {
foreach (IDiscreteDoubleValueModifier updater in InertiaUpdaterParameter.ValidValues) {
updater.EndIndexParameter.ActualName = MaxIterationsParameter.Name;
updater.EndIndexParameter.Hidden = true;
updater.StartIndexParameter.Value = new IntValue(0);
updater.StartIndexParameter.Hidden = true;
updater.IndexParameter.ActualName = "Iterations";
updater.ValueParameter.ActualName = "CurrentInertia";
updater.StartValueParameter.Value = new DoubleValue(1);
updater.EndValueParameter.Value = new DoubleValue(1E-10);
}
}
private void UpdateInertiaUpdater() {
IDiscreteDoubleValueModifier oldInertiaUpdater = InertiaUpdater;
InertiaUpdaterParameter.ValidValues.Clear();
foreach (IDiscreteDoubleValueModifier updater in ApplicationManager.Manager.GetInstances().OrderBy(x => x.Name)) {
InertiaUpdaterParameter.ValidValues.Add(updater);
}
if (oldInertiaUpdater != null) {
IDiscreteDoubleValueModifier updater = InertiaUpdaterParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldInertiaUpdater.GetType());
if (updater != null) InertiaUpdaterParameter.Value = updater;
}
}
private void UpdateTopologyInitializer() {
ITopologyInitializer oldTopologyInitializer = TopologyInitializer;
TopologyInitializerParameter.ValidValues.Clear();
foreach (ITopologyInitializer topologyInitializer in ApplicationManager.Manager.GetInstances().OrderBy(x => x.Name)) {
TopologyInitializerParameter.ValidValues.Add(topologyInitializer);
}
if (oldTopologyInitializer != null && TopologyInitializerParameter.ValidValues.Any(x => x.GetType() == oldTopologyInitializer.GetType()))
TopologyInitializer = TopologyInitializerParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldTopologyInitializer.GetType());
UpdateTopologyParameters();
}
private void ParameterizeTopologyUpdaters() {
foreach (var updater in TopologyUpdaterParameter.ValidValues) {
var multiPsoUpdater = updater as MultiPSOTopologyUpdater;
if (multiPsoUpdater != null) {
multiPsoUpdater.CurrentIterationParameter.ActualName = "Iterations";
}
}
}
private void UpdateTopologyParameters() {
ITopologyUpdater oldTopologyUpdater = TopologyUpdater;
IParticleUpdater oldParticleUpdater = ParticleUpdater;
ClearTopologyParameters();
if (Problem != null) {
if (TopologyInitializer != null) {
foreach (ITopologyUpdater topologyUpdater in ApplicationManager.Manager.GetInstances())
TopologyUpdaterParameter.ValidValues.Add(topologyUpdater);
foreach (IParticleUpdater particleUpdater in Problem.Operators.OfType().OrderBy(x => x.Name))
ParticleUpdaterParameter.ValidValues.Add(particleUpdater);
} else {
foreach (IParticleUpdater particleUpdater in Problem.Operators.OfType().OrderBy(x => x.Name))
ParticleUpdaterParameter.ValidValues.Add(particleUpdater);
}
if (oldTopologyUpdater != null) {
ITopologyUpdater newTopologyUpdater = TopologyUpdaterParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldParticleUpdater.GetType());
if (newTopologyUpdater != null) TopologyUpdater = newTopologyUpdater;
}
if (oldParticleUpdater != null) {
IParticleUpdater newParticleUpdater = ParticleUpdaterParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldParticleUpdater.GetType());
if (newParticleUpdater != null) ParticleUpdater = newParticleUpdater;
}
ParameterizeTopologyUpdaters();
}
}
private void ClearTopologyParameters() {
TopologyUpdaterParameter.ValidValues.Clear();
ParticleUpdaterParameter.ValidValues.Clear();
}
private void ParameterizeSolutionsCreator() {
if (Problem != null) {
solutionsCreator.EvaluatorParameter.ActualName = Problem.EvaluatorParameter.Name;
solutionsCreator.SolutionCreatorParameter.ActualName = ParticleCreatorParameter.Name;
}
}
private void ParameterizeMainLoop() {
if (Problem != null) {
mainLoop.EvaluatorParameter.ActualName = Problem.EvaluatorParameter.Name;
}
}
private void InitializeSwarmUpdater() {
if (Problem != null) {
ISwarmUpdater updater = Problem.Operators.OfType().FirstOrDefault();
SwarmUpdaterParameter.ValidValues.Clear();
if (updater != null) {
SwarmUpdaterParameter.ValidValues.Add(updater);
SwarmUpdaterParameter.Value = updater;
}
}
}
#endregion
}
}