#region License Information /* HeuristicLab * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Problems.DataAnalysis; using HeuristicLab.Problems.DataAnalysis.Symbolic; using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression; using HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis; namespace HeuristicLab.Algorithms.DataAnalysis { /// /// Linear time series prognosis data analysis algorithm. /// [Item("Linear Time Series Prognosis", "Linear time series prognosis data analysis algorithm (wrapper for ALGLIB).")] [Creatable("Data Analysis")] [StorableClass] public sealed class LinearTimeSeriesPrognosis : FixedDataAnalysisAlgorithm { private const string LinearTimeSeriesPrognosisModelResultName = "Linear time-series prognosis solution"; private const string MaximalLagParameterName = "MaximalLag"; public IFixedValueParameter MaximalLagParameter { get { return (IFixedValueParameter)Parameters[MaximalLagParameterName]; } } public int MaximalLag { get { return MaximalLagParameter.Value.Value; } set { MaximalLagParameter.Value.Value = value; } } [StorableConstructor] private LinearTimeSeriesPrognosis(bool deserializing) : base(deserializing) { } private LinearTimeSeriesPrognosis(LinearTimeSeriesPrognosis original, Cloner cloner) : base(original, cloner) { } public LinearTimeSeriesPrognosis() : base() { Parameters.Add(new FixedValueParameter(MaximalLagParameterName, "The maximal lag to use for auto-regressive terms.", new IntValue(1))); Problem = new TimeSeriesPrognosisProblem(); } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { } public override IDeepCloneable Clone(Cloner cloner) { return new LinearTimeSeriesPrognosis(this, cloner); } #region linear regression protected override void Run() { double[] rmsErrors, cvRmsErrors; var solution = CreateLinearTimeSeriesPrognosisSolution(Problem.ProblemData, MaximalLag, out rmsErrors, out cvRmsErrors); Results.Add(new Result(LinearTimeSeriesPrognosisModelResultName, "The linear time-series prognosis solution.", solution)); Results.Add(new Result("Root mean square errors", "The root of the mean of squared errors of the linear time-series prognosis solution on the training set.", new DoubleArray(rmsErrors))); Results.Add(new Result("Estimated root mean square errors (cross-validation)", "The estimated root of the mean of squared errors of the linear time-series prognosis solution via cross validation.", new DoubleArray(cvRmsErrors))); } public static ISymbolicTimeSeriesPrognosisSolution CreateLinearTimeSeriesPrognosisSolution(ITimeSeriesPrognosisProblemData problemData, int maximalLag, out double[] rmsError, out double[] cvRmsError) { Dataset dataset = problemData.Dataset; string[] targetVariables = problemData.TargetVariables.ToArray(); // prepare symbolic expression tree to hold the models for each target variable ISymbolicExpressionTree tree = new SymbolicExpressionTree(new ProgramRootSymbol().CreateTreeNode()); ISymbolicExpressionTreeNode startNode = new StartSymbol().CreateTreeNode(); tree.Root.AddSubtree(startNode); int i = 0; rmsError = new double[targetVariables.Length]; cvRmsError = new double[targetVariables.Length]; foreach (var targetVariable in targetVariables) { IEnumerable allowedInputVariables = problemData.AllowedInputVariables; IEnumerable rows = problemData.TrainingIndizes; IEnumerable lags = Enumerable.Range(1, maximalLag); double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables.Concat(new string[] { targetVariable }), rows, lags); if (inputMatrix.Cast().Any(x => double.IsNaN(x) || double.IsInfinity(x))) throw new NotSupportedException( "Linear time-series prognosis does not support NaN or infinity values in the input dataset."); alglib.linearmodel lm = new alglib.linearmodel(); alglib.lrreport ar = new alglib.lrreport(); int nRows = inputMatrix.GetLength(0); int nFeatures = inputMatrix.GetLength(1) - 1; double[] coefficients = new double[nFeatures + 1]; // last coefficient is for the constant int retVal = 1; alglib.lrbuild(inputMatrix, nRows, nFeatures, out retVal, out lm, out ar); if (retVal != 1) throw new ArgumentException("Error in calculation of linear time series prognosis solution"); rmsError[i] = ar.rmserror; cvRmsError[i] = ar.cvrmserror; alglib.lrunpack(lm, out coefficients, out nFeatures); ISymbolicExpressionTreeNode addition = new Addition().CreateTreeNode(); int col = 0; foreach (string column in allowedInputVariables) { foreach (int lag in lags) { LaggedVariableTreeNode vNode = (LaggedVariableTreeNode)new HeuristicLab.Problems.DataAnalysis.Symbolic.LaggedVariable().CreateTreeNode(); vNode.VariableName = column; vNode.Weight = coefficients[col]; vNode.Lag = -lag; addition.AddSubtree(vNode); col++; } } ConstantTreeNode cNode = (ConstantTreeNode)new Constant().CreateTreeNode(); cNode.Value = coefficients[coefficients.Length - 1]; addition.AddSubtree(cNode); startNode.AddSubtree(addition); i++; } SymbolicTimeSeriesPrognosisSolution solution = new SymbolicTimeSeriesPrognosisSolution(new SymbolicTimeSeriesPrognosisModel(tree, new SymbolicDataAnalysisExpressionTreeInterpreter(), problemData.TargetVariables.ToArray()), (ITimeSeriesPrognosisProblemData)problemData.Clone()); solution.Model.Name = "Linear Time-Series Prognosis Model"; return solution; } #endregion } }