#region License Information
/* HeuristicLab
* Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.DataAnalysis;
using HeuristicLab.Problems.DataAnalysis.Symbolic;
using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
using HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis;
namespace HeuristicLab.Algorithms.DataAnalysis {
///
/// Linear time series prognosis data analysis algorithm.
///
[Item("Linear Time Series Prognosis", "Linear time series prognosis data analysis algorithm (wrapper for ALGLIB).")]
[Creatable("Data Analysis")]
[StorableClass]
public sealed class LinearTimeSeriesPrognosis : FixedDataAnalysisAlgorithm {
private const string LinearTimeSeriesPrognosisModelResultName = "Linear time-series prognosis solution";
private const string MaximalLagParameterName = "MaximalLag";
public IFixedValueParameter MaximalLagParameter {
get { return (IFixedValueParameter)Parameters[MaximalLagParameterName]; }
}
public int MaximalLag {
get { return MaximalLagParameter.Value.Value; }
set { MaximalLagParameter.Value.Value = value; }
}
[StorableConstructor]
private LinearTimeSeriesPrognosis(bool deserializing) : base(deserializing) { }
private LinearTimeSeriesPrognosis(LinearTimeSeriesPrognosis original, Cloner cloner)
: base(original, cloner) {
}
public LinearTimeSeriesPrognosis()
: base() {
Parameters.Add(new FixedValueParameter(MaximalLagParameterName,
"The maximal lag to use for auto-regressive terms.",
new IntValue(1)));
Problem = new TimeSeriesPrognosisProblem();
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() { }
public override IDeepCloneable Clone(Cloner cloner) {
return new LinearTimeSeriesPrognosis(this, cloner);
}
#region linear regression
protected override void Run() {
double[] rmsErrors, cvRmsErrors;
var solution = CreateLinearTimeSeriesPrognosisSolution(Problem.ProblemData, MaximalLag, out rmsErrors, out cvRmsErrors);
Results.Add(new Result(LinearTimeSeriesPrognosisModelResultName, "The linear time-series prognosis solution.", solution));
Results.Add(new Result("Root mean square errors", "The root of the mean of squared errors of the linear time-series prognosis solution on the training set.", new DoubleArray(rmsErrors)));
Results.Add(new Result("Estimated root mean square errors (cross-validation)", "The estimated root of the mean of squared errors of the linear time-series prognosis solution via cross validation.", new DoubleArray(cvRmsErrors)));
}
public static ISymbolicTimeSeriesPrognosisSolution CreateLinearTimeSeriesPrognosisSolution(ITimeSeriesPrognosisProblemData problemData, int maximalLag, out double[] rmsError, out double[] cvRmsError) {
Dataset dataset = problemData.Dataset;
string[] targetVariables = problemData.TargetVariables.ToArray();
// prepare symbolic expression tree to hold the models for each target variable
ISymbolicExpressionTree tree = new SymbolicExpressionTree(new ProgramRootSymbol().CreateTreeNode());
ISymbolicExpressionTreeNode startNode = new StartSymbol().CreateTreeNode();
tree.Root.AddSubtree(startNode);
int i = 0;
rmsError = new double[targetVariables.Length];
cvRmsError = new double[targetVariables.Length];
foreach (var targetVariable in targetVariables) {
IEnumerable allowedInputVariables = problemData.AllowedInputVariables;
IEnumerable rows = problemData.TrainingIndizes;
IEnumerable lags = Enumerable.Range(1, maximalLag);
double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset,
allowedInputVariables.Concat(new string[] { targetVariable }),
rows, lags);
if (inputMatrix.Cast().Any(x => double.IsNaN(x) || double.IsInfinity(x)))
throw new NotSupportedException(
"Linear time-series prognosis does not support NaN or infinity values in the input dataset.");
alglib.linearmodel lm = new alglib.linearmodel();
alglib.lrreport ar = new alglib.lrreport();
int nRows = inputMatrix.GetLength(0);
int nFeatures = inputMatrix.GetLength(1) - 1;
double[] coefficients = new double[nFeatures + 1]; // last coefficient is for the constant
int retVal = 1;
alglib.lrbuild(inputMatrix, nRows, nFeatures, out retVal, out lm, out ar);
if (retVal != 1) throw new ArgumentException("Error in calculation of linear time series prognosis solution");
rmsError[i] = ar.rmserror;
cvRmsError[i] = ar.cvrmserror;
alglib.lrunpack(lm, out coefficients, out nFeatures);
ISymbolicExpressionTreeNode addition = new Addition().CreateTreeNode();
int col = 0;
foreach (string column in allowedInputVariables) {
foreach (int lag in lags) {
LaggedVariableTreeNode vNode =
(LaggedVariableTreeNode)new HeuristicLab.Problems.DataAnalysis.Symbolic.LaggedVariable().CreateTreeNode();
vNode.VariableName = column;
vNode.Weight = coefficients[col];
vNode.Lag = -lag;
addition.AddSubtree(vNode);
col++;
}
}
ConstantTreeNode cNode = (ConstantTreeNode)new Constant().CreateTreeNode();
cNode.Value = coefficients[coefficients.Length - 1];
addition.AddSubtree(cNode);
startNode.AddSubtree(addition);
i++;
}
SymbolicTimeSeriesPrognosisSolution solution = new SymbolicTimeSeriesPrognosisSolution(new SymbolicTimeSeriesPrognosisModel(tree, new SymbolicDataAnalysisExpressionTreeInterpreter(), problemData.TargetVariables.ToArray()), (ITimeSeriesPrognosisProblemData)problemData.Clone());
solution.Model.Name = "Linear Time-Series Prognosis Model";
return solution;
}
#endregion
}
}