1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Drawing;
|
---|
25 | using System.Globalization;
|
---|
26 | using System.Linq;
|
---|
27 | using System.Threading.Tasks;
|
---|
28 | using System.Windows.Forms;
|
---|
29 | using System.Windows.Forms.DataVisualization.Charting;
|
---|
30 | using HeuristicLab.Common;
|
---|
31 | using HeuristicLab.MainForm.WindowsForms;
|
---|
32 | using HeuristicLab.Visualization.ChartControlsExtensions;
|
---|
33 |
|
---|
34 | namespace HeuristicLab.Problems.DataAnalysis.Views {
|
---|
35 | public partial class GradientChart : UserControl {
|
---|
36 | private ModifiableDataset sharedFixedVariables; // used for syncronising variable values between charts
|
---|
37 | private ModifiableDataset internalDataset; // holds the x values for each point drawn
|
---|
38 |
|
---|
39 | public bool ShowLegend {
|
---|
40 | get { return chart.Legends[0].Enabled; }
|
---|
41 | set { chart.Legends[0].Enabled = value; }
|
---|
42 | }
|
---|
43 | public bool ShowXAxisLabel {
|
---|
44 | get { return chart.ChartAreas[0].AxisX.Enabled == AxisEnabled.True; }
|
---|
45 | set { chart.ChartAreas[0].AxisX.Enabled = value ? AxisEnabled.True : AxisEnabled.False; }
|
---|
46 | }
|
---|
47 | public bool ShowYAxisLabel {
|
---|
48 | get { return chart.ChartAreas[0].AxisY.Enabled == AxisEnabled.True; }
|
---|
49 | set { chart.ChartAreas[0].AxisY.Enabled = value ? AxisEnabled.True : AxisEnabled.False; }
|
---|
50 | }
|
---|
51 | public bool ShowCursor {
|
---|
52 | get { return chart.Annotations[0].Visible; }
|
---|
53 | set { chart.Annotations[0].Visible = value; }
|
---|
54 | }
|
---|
55 |
|
---|
56 | private int xAxisTicks = 5;
|
---|
57 | public int XAxisTicks {
|
---|
58 | get { return xAxisTicks; }
|
---|
59 | set { if (xAxisTicks != value) { xAxisTicks = value; UpdateChartAsync(); } }
|
---|
60 | }
|
---|
61 | private int yAxisTicks = 5;
|
---|
62 | public int YXAxisTicks {
|
---|
63 | get { return yAxisTicks; }
|
---|
64 | set { if (yAxisTicks != value) { yAxisTicks = value; UpdateChartAsync(); } }
|
---|
65 | }
|
---|
66 |
|
---|
67 | private double trainingMin = double.MinValue;
|
---|
68 | public double TrainingMin {
|
---|
69 | get { return trainingMin; }
|
---|
70 | set { if (!value.IsAlmost(trainingMin)) { trainingMin = value; UpdateChartAsync(); } }
|
---|
71 | }
|
---|
72 | private double trainingMax = double.MaxValue;
|
---|
73 | public double TrainingMax {
|
---|
74 | get { return trainingMax; }
|
---|
75 | set { if (!value.IsAlmost(trainingMax)) { trainingMax = value; UpdateChartAsync(); } }
|
---|
76 | }
|
---|
77 |
|
---|
78 | private int drawingSteps = 1000;
|
---|
79 | public int DrawingSteps {
|
---|
80 | get { return drawingSteps; }
|
---|
81 | set { if (value != drawingSteps) { drawingSteps = value; UpdateChartAsync(); } }
|
---|
82 | }
|
---|
83 |
|
---|
84 | private string freeVariable;
|
---|
85 | public string FreeVariable {
|
---|
86 | get { return freeVariable; }
|
---|
87 | set {
|
---|
88 | if (value == freeVariable) return;
|
---|
89 | if (solutions.Any(s => !s.ProblemData.Dataset.DoubleVariables.Contains(value))) {
|
---|
90 | throw new ArgumentException("Variable does not exist in the ProblemData of the Solutions.");
|
---|
91 | }
|
---|
92 | freeVariable = value;
|
---|
93 | RecalculateInternalDataset();
|
---|
94 | UpdateChartAsync();
|
---|
95 | }
|
---|
96 | }
|
---|
97 |
|
---|
98 | private readonly List<IRegressionSolution> solutions = new List<IRegressionSolution>();
|
---|
99 | public IEnumerable<IRegressionSolution> Solutions {
|
---|
100 | get { return solutions; }
|
---|
101 | }
|
---|
102 |
|
---|
103 | private VerticalLineAnnotation VerticalLineAnnotation {
|
---|
104 | get { return (VerticalLineAnnotation)chart.Annotations.SingleOrDefault(x => x is VerticalLineAnnotation); }
|
---|
105 | }
|
---|
106 |
|
---|
107 | public GradientChart() {
|
---|
108 | InitializeComponent();
|
---|
109 |
|
---|
110 | // Configure axis
|
---|
111 | chart.CustomizeAllChartAreas();
|
---|
112 | chart.ChartAreas[0].CursorX.IsUserSelectionEnabled = true;
|
---|
113 | chart.ChartAreas[0].AxisX.ScaleView.Zoomable = true;
|
---|
114 | chart.ChartAreas[0].CursorX.Interval = 0;
|
---|
115 |
|
---|
116 | chart.ChartAreas[0].CursorY.IsUserSelectionEnabled = true;
|
---|
117 | chart.ChartAreas[0].AxisY.ScaleView.Zoomable = true;
|
---|
118 | chart.ChartAreas[0].CursorY.Interval = 0;
|
---|
119 | }
|
---|
120 |
|
---|
121 | public void Configure(IEnumerable<IRegressionSolution> solutions, ModifiableDataset sharedFixedVariables, string freeVariable, int drawingSteps) {
|
---|
122 | if (!SolutionsCompatible(solutions))
|
---|
123 | throw new ArgumentException("Solutions are not compatible with the problem data.");
|
---|
124 | this.solutions.Clear();
|
---|
125 | this.solutions.AddRange(solutions);
|
---|
126 | this.freeVariable = freeVariable;
|
---|
127 | this.drawingSteps = drawingSteps;
|
---|
128 |
|
---|
129 | // add an event such that whenever a value is changed in the shared dataset,
|
---|
130 | // this change is reflected in the internal dataset (where the value becomes a whole column)
|
---|
131 | if (this.sharedFixedVariables != null)
|
---|
132 | this.sharedFixedVariables.ItemChanged -= sharedFixedVariables_ItemChanged;
|
---|
133 | this.sharedFixedVariables = sharedFixedVariables;
|
---|
134 | this.sharedFixedVariables.ItemChanged += sharedFixedVariables_ItemChanged;
|
---|
135 |
|
---|
136 | RecalculateTrainingLimits();
|
---|
137 | RecalculateInternalDataset();
|
---|
138 | }
|
---|
139 |
|
---|
140 | private void sharedFixedVariables_ItemChanged(object o, EventArgs<int, int> e) {
|
---|
141 | if (o != sharedFixedVariables) return;
|
---|
142 | var variables = sharedFixedVariables.DoubleVariables.ToList();
|
---|
143 | var rowIndex = e.Value;
|
---|
144 | var columnIndex = e.Value2;
|
---|
145 |
|
---|
146 | var variableName = variables[columnIndex];
|
---|
147 | if (variableName == FreeVariable) return;
|
---|
148 | var v = sharedFixedVariables.GetDoubleValue(variableName, rowIndex);
|
---|
149 | var values = new List<double>(Enumerable.Repeat(v, DrawingSteps));
|
---|
150 | internalDataset.ReplaceVariable(variableName, values);
|
---|
151 | }
|
---|
152 |
|
---|
153 | private void RecalculateInternalDataset() {
|
---|
154 | // we expand the range in order to get nice tick intervals on the x axis
|
---|
155 | double xmin, xmax, xinterval;
|
---|
156 | ChartUtil.CalculateAxisInterval(trainingMin, trainingMax, XAxisTicks, out xmin, out xmax, out xinterval);
|
---|
157 | double step = (xmax - xmin) / drawingSteps;
|
---|
158 |
|
---|
159 | var xvalues = new List<double>();
|
---|
160 | for (int i = 0; i < drawingSteps; i++)
|
---|
161 | xvalues.Add(xmin + i * step);
|
---|
162 |
|
---|
163 | var variables = sharedFixedVariables.DoubleVariables.ToList();
|
---|
164 | internalDataset = new ModifiableDataset(variables,
|
---|
165 | variables.Select(x => x == FreeVariable
|
---|
166 | ? xvalues
|
---|
167 | : Enumerable.Repeat(sharedFixedVariables.GetDoubleValue(x, 0), xvalues.Count).ToList()
|
---|
168 | )
|
---|
169 | );
|
---|
170 | }
|
---|
171 |
|
---|
172 | private void RecalculateTrainingLimits() {
|
---|
173 | trainingMin = solutions.Select(s => s.ProblemData.Dataset.GetDoubleValues(freeVariable, s.ProblemData.TrainingIndices).Min()).Max();
|
---|
174 | trainingMax = solutions.Select(s => s.ProblemData.Dataset.GetDoubleValues(freeVariable, s.ProblemData.TrainingIndices).Max()).Min();
|
---|
175 | }
|
---|
176 |
|
---|
177 | public async Task UpdateChartAsync() {
|
---|
178 | // throw exceptions?
|
---|
179 | if (sharedFixedVariables == null || solutions == null || !solutions.Any())
|
---|
180 | return;
|
---|
181 | if (trainingMin.IsAlmost(trainingMax) || trainingMin > trainingMax || drawingSteps == 0)
|
---|
182 | return;
|
---|
183 |
|
---|
184 | // Set cursor
|
---|
185 | var defaultValue = sharedFixedVariables.GetDoubleValue(freeVariable, 0);
|
---|
186 | VerticalLineAnnotation.X = defaultValue;
|
---|
187 |
|
---|
188 | // Calculate X-axis interval
|
---|
189 | double axisMin, axisMax, axisInterval;
|
---|
190 | ChartUtil.CalculateAxisInterval(trainingMin, trainingMax, XAxisTicks, out axisMin, out axisMax, out axisInterval);
|
---|
191 | var axis = chart.ChartAreas[0].AxisX;
|
---|
192 | axis.Minimum = axisMin;
|
---|
193 | axis.Maximum = axisMax;
|
---|
194 | axis.Interval = axisInterval;
|
---|
195 |
|
---|
196 | // Create series <mean, conf. interval>
|
---|
197 | var seriesDict = new Dictionary<Series, Series>();
|
---|
198 | for (int i = 0; i < solutions.Count; ++i) {
|
---|
199 | var solution = solutions[i];
|
---|
200 | var series = await CreateSeriesAsync(solution);
|
---|
201 | series.Item1.Tag = i; // for sorting
|
---|
202 | var meanSeries = series.Item1;
|
---|
203 | var confidenceIntervalSeries = series.Item2;
|
---|
204 | meanSeries.Name = solution.ProblemData.TargetVariable + " " + i;
|
---|
205 | seriesDict.Add(meanSeries, confidenceIntervalSeries);
|
---|
206 | if (confidenceIntervalSeries != null)
|
---|
207 | confidenceIntervalSeries.Name = "95% Conf. Interval " + meanSeries.Name;
|
---|
208 | }
|
---|
209 |
|
---|
210 | chart.SuspendRepaint();
|
---|
211 | chart.Series.Clear();
|
---|
212 | // Add mean series for applying palette colors
|
---|
213 | foreach (var series in seriesDict.Keys.OrderBy(s => (int)s.Tag)) {
|
---|
214 | series.LegendText = series.Name;
|
---|
215 | chart.Series.Add(series);
|
---|
216 | }
|
---|
217 | chart.Palette = ChartColorPalette.BrightPastel;
|
---|
218 | chart.ApplyPaletteColors();
|
---|
219 | chart.Palette = ChartColorPalette.None;
|
---|
220 |
|
---|
221 | foreach (var series in seriesDict.OrderBy(s => (int)s.Key.Tag)) {
|
---|
222 | if (series.Value == null) continue;
|
---|
223 | int idx = chart.Series.IndexOf(series.Key);
|
---|
224 | series.Value.Color = Color.FromArgb(40, series.Key.Color);
|
---|
225 | series.Value.IsVisibleInLegend = false;
|
---|
226 | chart.Series.Insert(idx, series.Value);
|
---|
227 | }
|
---|
228 | chart.ResumeRepaint(true);
|
---|
229 |
|
---|
230 |
|
---|
231 | // calculate Y-axis interval
|
---|
232 | //double ymin = 0, ymax = 0;
|
---|
233 | //foreach (var vs in chart.Series.SelectMany(series => series.Points.Select(s => s.YValues))) {
|
---|
234 | // for (int index = 0; index < vs.Length; index++) {
|
---|
235 | // var v = vs[index];
|
---|
236 | // if (ymin > v) ymin = v;
|
---|
237 | // if (ymax < v) ymax = v;
|
---|
238 | // }
|
---|
239 | //}
|
---|
240 | //ChartUtil.CalculateAxisInterval(ymin, ymax, YXAxisTicks, out axisMin, out axisMax, out axisInterval);
|
---|
241 | //axis = chart.ChartAreas[0].AxisY;
|
---|
242 | //axis.Minimum = axisMin;
|
---|
243 | //axis.Maximum = axisMax;
|
---|
244 | //axis.Interval = axisInterval;
|
---|
245 | //chart.ChartAreas[0].RecalculateAxesScale();
|
---|
246 |
|
---|
247 | // set axis title
|
---|
248 | chart.ChartAreas[0].AxisX.Title = FreeVariable + " : " + defaultValue.ToString("N3", CultureInfo.CurrentCulture);
|
---|
249 |
|
---|
250 | UpdateStripLines();
|
---|
251 | }
|
---|
252 |
|
---|
253 | private Task<Tuple<Series, Series>> CreateSeriesAsync(IRegressionSolution solution) {
|
---|
254 | return Task.Run(() => {
|
---|
255 | var xvalues = internalDataset.GetDoubleValues(FreeVariable).ToList();
|
---|
256 | var yvalues = solution.Model.GetEstimatedValues(internalDataset, Enumerable.Range(0, internalDataset.Rows)).ToList();
|
---|
257 |
|
---|
258 | var series = new Series { ChartType = SeriesChartType.Line };
|
---|
259 | series.Points.DataBindXY(xvalues, yvalues);
|
---|
260 |
|
---|
261 | var confidenceBoundSolution = solution as IConfidenceBoundRegressionSolution;
|
---|
262 | Series confidenceIntervalSeries = null;
|
---|
263 | if (confidenceBoundSolution != null) {
|
---|
264 | var variances = confidenceBoundSolution.Model.GetEstimatedVariances(internalDataset, Enumerable.Range(0, internalDataset.Rows)).ToList();
|
---|
265 |
|
---|
266 | var lower = yvalues.Zip(variances, (m, s2) => m - 1.96 * Math.Sqrt(s2)).ToList();
|
---|
267 | var upper = yvalues.Zip(variances, (m, s2) => m + 1.96 * Math.Sqrt(s2)).ToList();
|
---|
268 |
|
---|
269 | confidenceIntervalSeries = new Series { ChartType = SeriesChartType.Range, YValuesPerPoint = 2 };
|
---|
270 | confidenceIntervalSeries.Points.DataBindXY(xvalues, lower, upper);
|
---|
271 | }
|
---|
272 |
|
---|
273 | return Tuple.Create(series, confidenceIntervalSeries);
|
---|
274 | });
|
---|
275 | }
|
---|
276 |
|
---|
277 | public void AddSolution(IRegressionSolution solution) {
|
---|
278 | if (!SolutionsCompatible(solutions.Concat(new[] { solution })))
|
---|
279 | throw new ArgumentException("The solution is not compatible with the problem data.");
|
---|
280 | if (solutions.Contains(solution)) return;
|
---|
281 | solutions.Add(solution);
|
---|
282 | RecalculateTrainingLimits();
|
---|
283 | UpdateChartAsync();
|
---|
284 | }
|
---|
285 | public void RemoveSolution(IRegressionSolution solution) {
|
---|
286 | if (!solutions.Remove(solution)) return;
|
---|
287 | RecalculateTrainingLimits();
|
---|
288 | UpdateChartAsync();
|
---|
289 | }
|
---|
290 |
|
---|
291 | private static bool SolutionsCompatible(IEnumerable<IRegressionSolution> solutions) {
|
---|
292 | foreach (var solution1 in solutions) {
|
---|
293 | var variables1 = solution1.ProblemData.Dataset.DoubleVariables;
|
---|
294 | foreach (var solution2 in solutions) {
|
---|
295 | if (solution1 == solution2)
|
---|
296 | continue;
|
---|
297 | var variables2 = solution2.ProblemData.Dataset.DoubleVariables;
|
---|
298 | if (!variables1.All(variables2.Contains))
|
---|
299 | return false;
|
---|
300 | }
|
---|
301 | }
|
---|
302 | return true;
|
---|
303 | }
|
---|
304 |
|
---|
305 | private void UpdateStripLines() {
|
---|
306 | var axisX = chart.ChartAreas[0].AxisX;
|
---|
307 | var lowerStripLine = axisX.StripLines[0];
|
---|
308 | var upperStripLine = axisX.StripLines[1];
|
---|
309 |
|
---|
310 | lowerStripLine.IntervalOffset = axisX.Minimum;
|
---|
311 | lowerStripLine.StripWidth = trainingMin - axisX.Minimum;
|
---|
312 |
|
---|
313 | upperStripLine.IntervalOffset = trainingMax;
|
---|
314 | upperStripLine.StripWidth = axisX.Maximum - trainingMax;
|
---|
315 | }
|
---|
316 |
|
---|
317 | #region events
|
---|
318 | public event EventHandler VariableValueChanged;
|
---|
319 | public void OnVariableValueChanged(object sender, EventArgs args) {
|
---|
320 | var changed = VariableValueChanged;
|
---|
321 | if (changed == null) return;
|
---|
322 | changed(sender, args);
|
---|
323 | }
|
---|
324 |
|
---|
325 | private void chart_AnnotationPositionChanged(object sender, EventArgs e) {
|
---|
326 | var annotation = VerticalLineAnnotation;
|
---|
327 | var x = annotation.X;
|
---|
328 | sharedFixedVariables.SetVariableValue(x, FreeVariable, 0);
|
---|
329 |
|
---|
330 | chart.ChartAreas[0].AxisX.Title = FreeVariable + " : " + x.ToString("N3", CultureInfo.CurrentCulture);
|
---|
331 | chart.Update();
|
---|
332 |
|
---|
333 | OnVariableValueChanged(this, EventArgs.Empty);
|
---|
334 | }
|
---|
335 |
|
---|
336 | private void chart_AnnotationPositionChanging(object sender, AnnotationPositionChangingEventArgs e) {
|
---|
337 | //var step = (trainingMax - trainingMin) / drawingSteps;
|
---|
338 | //e.NewLocationX = step * (long)Math.Round(e.NewLocationX / step);
|
---|
339 | //var axisX = chart.ChartAreas[0].AxisX;
|
---|
340 | //if (e.NewLocationX > axisX.Maximum)
|
---|
341 | // e.NewLocationX = axisX.Maximum;
|
---|
342 | //if (e.NewLocationX < axisX.Minimum)
|
---|
343 | // e.NewLocationX = axisX.Minimum;
|
---|
344 |
|
---|
345 | var annotation = VerticalLineAnnotation;
|
---|
346 | var x = annotation.X;
|
---|
347 | sharedFixedVariables.SetVariableValue(x, FreeVariable, 0);
|
---|
348 |
|
---|
349 | chart.ChartAreas[0].AxisX.Title = FreeVariable + " : " + x.ToString("N3", CultureInfo.CurrentCulture);
|
---|
350 | chart.Update();
|
---|
351 |
|
---|
352 | OnVariableValueChanged(this, EventArgs.Empty);
|
---|
353 | }
|
---|
354 |
|
---|
355 | private void chart_MouseMove(object sender, MouseEventArgs e) {
|
---|
356 | chart.Cursor = chart.HitTest(e.X, e.Y).ChartElementType == ChartElementType.Annotation ? Cursors.VSplit : Cursors.Default;
|
---|
357 | }
|
---|
358 |
|
---|
359 | private void chart_FormatNumber(object sender, FormatNumberEventArgs e) {
|
---|
360 | if (e.ElementType == ChartElementType.AxisLabels) {
|
---|
361 | switch (e.Format) {
|
---|
362 | case "CustomAxisXFormat":
|
---|
363 | break;
|
---|
364 | case "CustomAxisYFormat":
|
---|
365 | var v = e.Value;
|
---|
366 | e.LocalizedValue = string.Format("{0,5}", v);
|
---|
367 | break;
|
---|
368 | default:
|
---|
369 | break;
|
---|
370 | }
|
---|
371 | }
|
---|
372 | }
|
---|
373 |
|
---|
374 | private void GradientChart_DragDrop(object sender, DragEventArgs e) {
|
---|
375 | var data = e.Data.GetData(HeuristicLab.Common.Constants.DragDropDataFormat);
|
---|
376 | if (data != null) {
|
---|
377 | var solution = data as IRegressionSolution;
|
---|
378 | if (!Solutions.Contains(solution))
|
---|
379 | AddSolution(solution);
|
---|
380 | }
|
---|
381 | }
|
---|
382 | private void GradientChart_DragEnter(object sender, DragEventArgs e) {
|
---|
383 | if (!e.Data.GetDataPresent(HeuristicLab.Common.Constants.DragDropDataFormat)) return;
|
---|
384 | e.Effect = DragDropEffects.None;
|
---|
385 |
|
---|
386 | var data = e.Data.GetData(HeuristicLab.Common.Constants.DragDropDataFormat);
|
---|
387 | var regressionSolution = data as IRegressionSolution;
|
---|
388 | if (regressionSolution != null) {
|
---|
389 | e.Effect = DragDropEffects.Copy;
|
---|
390 | }
|
---|
391 | }
|
---|
392 | #endregion
|
---|
393 | }
|
---|
394 | }
|
---|