#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Drawing; using System.Globalization; using System.Linq; using System.Threading; using System.Threading.Tasks; using System.Windows.Forms; using System.Windows.Forms.DataVisualization.Charting; using HeuristicLab.Common; using HeuristicLab.MainForm.WindowsForms; using HeuristicLab.Visualization.ChartControlsExtensions; namespace HeuristicLab.Problems.DataAnalysis.Views { public partial class GradientChart : UserControl { private ModifiableDataset sharedFixedVariables; // used for syncronising variable values between charts private ModifiableDataset internalDataset; // holds the x values for each point drawn private CancellationTokenSource cancelCurrentRecalculateSource; private readonly List solutions; private readonly Dictionary seriesCache; private readonly Dictionary ciSeriesCache; #region Properties public bool ShowLegend { get { return chart.Legends[0].Enabled; } set { chart.Legends[0].Enabled = value; } } public bool ShowXAxisLabel { get { return chart.ChartAreas[0].AxisX.Enabled == AxisEnabled.True; } set { chart.ChartAreas[0].AxisX.Enabled = value ? AxisEnabled.True : AxisEnabled.False; } } public bool ShowYAxisLabel { get { return chart.ChartAreas[0].AxisY.Enabled == AxisEnabled.True; } set { chart.ChartAreas[0].AxisY.Enabled = value ? AxisEnabled.True : AxisEnabled.False; } } public bool ShowCursor { get { return chart.Annotations[0].Visible; } set { chart.Annotations[0].Visible = value; } } private int xAxisTicks = 5; public int XAxisTicks { get { return xAxisTicks; } set { if (value != xAxisTicks) { xAxisTicks = value; SetupAxis(chart.ChartAreas[0].AxisX, trainingMin, trainingMax, XAxisTicks, FixedXAxisMin, FixedXAxisMax); RecalculateInternalDataset(); } } } private double? fixedXAxisMin; public double? FixedXAxisMin { get { return fixedXAxisMin; } set { if ((value.HasValue && fixedXAxisMin.HasValue && !value.Value.IsAlmost(fixedXAxisMin.Value)) || (value.HasValue != fixedXAxisMin.HasValue)) { fixedXAxisMin = value; SetupAxis(chart.ChartAreas[0].AxisX, trainingMin, trainingMax, XAxisTicks, FixedXAxisMin, FixedXAxisMax); RecalculateInternalDataset(); } } } private double? fixedXAxisMax; public double? FixedXAxisMax { get { return fixedXAxisMax; } set { if ((value.HasValue && fixedXAxisMax.HasValue && !value.Value.IsAlmost(fixedXAxisMax.Value)) || (value.HasValue != fixedXAxisMax.HasValue)) { fixedXAxisMax = value; SetupAxis(chart.ChartAreas[0].AxisX, trainingMin, trainingMax, XAxisTicks, FixedXAxisMin, FixedXAxisMax); RecalculateInternalDataset(); } } } private int yAxisTicks = 5; public int YAxisTicks { get { return yAxisTicks; } set { if (value != yAxisTicks) { yAxisTicks = value; SetupAxis(chart.ChartAreas[0].AxisY, yMin, yMax, YAxisTicks, FixedYAxisMin, FixedYAxisMax); RecalculateInternalDataset(); } } } private double? fixedYAxisMin; public double? FixedYAxisMin { get { return fixedYAxisMin; } set { if ((value.HasValue && fixedYAxisMin.HasValue && !value.Value.IsAlmost(fixedYAxisMin.Value)) || (value.HasValue != fixedYAxisMin.HasValue)) { fixedYAxisMin = value; SetupAxis(chart.ChartAreas[0].AxisY, yMin, yMax, YAxisTicks, FixedYAxisMin, FixedYAxisMax); } } } private double? fixedYAxisMax; public double? FixedYAxisMax { get { return fixedYAxisMax; } set { if ((value.HasValue && fixedYAxisMax.HasValue && !value.Value.IsAlmost(fixedYAxisMax.Value)) || (value.HasValue != fixedYAxisMax.HasValue)) { fixedYAxisMax = value; SetupAxis(chart.ChartAreas[0].AxisY, yMin, yMax, YAxisTicks, FixedYAxisMin, FixedYAxisMax); } } } private double trainingMin = 1; private double trainingMax = -1; private int drawingSteps = 1000; public int DrawingSteps { get { return drawingSteps; } set { if (value != drawingSteps) { drawingSteps = value; RecalculateInternalDataset(); ResizeAllSeriesData(); } } } private string freeVariable; public string FreeVariable { get { return freeVariable; } set { if (value == freeVariable) return; if (solutions.Any(s => !s.ProblemData.Dataset.DoubleVariables.Contains(value))) { throw new ArgumentException("Variable does not exist in the ProblemData of the Solutions."); } freeVariable = value; RecalculateInternalDataset(); } } private double yMin; public double YMin { get { return yMin; } } private double yMax; public double YMax { get { return yMax; } } private VerticalLineAnnotation VerticalLineAnnotation { get { return (VerticalLineAnnotation)chart.Annotations.SingleOrDefault(x => x is VerticalLineAnnotation); } } #endregion public GradientChart() { InitializeComponent(); solutions = new List(); seriesCache = new Dictionary(); ciSeriesCache = new Dictionary(); // Configure axis chart.CustomizeAllChartAreas(); chart.ChartAreas[0].CursorX.IsUserSelectionEnabled = true; chart.ChartAreas[0].AxisX.ScaleView.Zoomable = true; chart.ChartAreas[0].CursorX.Interval = 0; chart.ChartAreas[0].CursorY.IsUserSelectionEnabled = true; chart.ChartAreas[0].AxisY.ScaleView.Zoomable = true; chart.ChartAreas[0].CursorY.Interval = 0; Disposed += GradientChart_Disposed; } private void GradientChart_Disposed(object sender, EventArgs e) { if (cancelCurrentRecalculateSource != null) cancelCurrentRecalculateSource.Cancel(); } public void Configure(IEnumerable solutions, ModifiableDataset sharedFixedVariables, string freeVariable, int drawingSteps, bool initializeAxisRanges = true) { if (!SolutionsCompatible(solutions)) throw new ArgumentException("Solutions are not compatible with the problem data."); this.freeVariable = freeVariable; this.drawingSteps = drawingSteps; this.solutions.Clear(); this.solutions.AddRange(solutions); // add an event such that whenever a value is changed in the shared dataset, // this change is reflected in the internal dataset (where the value becomes a whole column) if (this.sharedFixedVariables != null) this.sharedFixedVariables.ItemChanged -= sharedFixedVariables_ItemChanged; this.sharedFixedVariables = sharedFixedVariables; this.sharedFixedVariables.ItemChanged += sharedFixedVariables_ItemChanged; RecalculateTrainingLimits(initializeAxisRanges); RecalculateInternalDataset(); chart.Series.Clear(); seriesCache.Clear(); ciSeriesCache.Clear(); foreach (var solution in this.solutions) { var series = CreateSeries(solution); seriesCache.Add(solution, series.Item1); if (series.Item2 != null) ciSeriesCache.Add(solution, series.Item2); } ResizeAllSeriesData(); OrderAndColorSeries(); } public async Task RecalculateAsync(bool updateOnFinish = true, bool resetYAxis = true) { if (IsDisposed || sharedFixedVariables == null || !solutions.Any() || string.IsNullOrEmpty(freeVariable) || trainingMin.IsAlmost(trainingMax) || trainingMin > trainingMax || drawingSteps == 0) return; statusLabel.Visible = true; Update(); // immediately show label // cancel previous recalculate call if (cancelCurrentRecalculateSource != null) cancelCurrentRecalculateSource.Cancel(); cancelCurrentRecalculateSource = new CancellationTokenSource(); // Set cursor and x-axis var defaultValue = sharedFixedVariables.GetDoubleValue(freeVariable, 0); VerticalLineAnnotation.X = defaultValue; chart.ChartAreas[0].AxisX.Title = FreeVariable + " : " + defaultValue.ToString("N3", CultureInfo.CurrentCulture); // Update series var cancellationToken = cancelCurrentRecalculateSource.Token; try { var limits = await UpdateAllSeriesDataAsync(cancellationToken); //cancellationToken.ThrowIfCancellationRequested(); yMin = limits.Lower; yMax = limits.Upper; // Set y-axis if (resetYAxis) SetupAxis(chart.ChartAreas[0].AxisY, yMin, yMax, YAxisTicks, FixedYAxisMin, FixedYAxisMax); UpdateOutOfTrainingRangeStripLines(); statusLabel.Visible = false; if (updateOnFinish) Update(); } catch (OperationCanceledException) { } catch (AggregateException ae) { if (!ae.InnerExceptions.Any(e => e is OperationCanceledException)) throw; } } private void SetupAxis(Axis axis, double minValue, double maxValue, int ticks, double? fixedAxisMin, double? fixedAxisMax) { double axisMin, axisMax, axisInterval; ChartUtil.CalculateAxisInterval(minValue, maxValue, ticks, out axisMin, out axisMax, out axisInterval); axis.Minimum = fixedAxisMin ?? axisMin; axis.Maximum = fixedAxisMax ?? axisMax; axis.Interval = (axis.Maximum - axis.Minimum) / ticks; try { chart.ChartAreas[0].RecalculateAxesScale(); } catch (InvalidOperationException) { // Can occur if eg. axis min == axis max } } private void RecalculateTrainingLimits(bool initializeAxisRanges) { trainingMin = solutions.Select(s => s.ProblemData.Dataset.GetDoubleValues(freeVariable, s.ProblemData.TrainingIndices).Min()).Max(); trainingMax = solutions.Select(s => s.ProblemData.Dataset.GetDoubleValues(freeVariable, s.ProblemData.TrainingIndices).Max()).Min(); if (initializeAxisRanges) { double xmin, xmax, xinterval; ChartUtil.CalculateAxisInterval(trainingMin, trainingMax, XAxisTicks, out xmin, out xmax, out xinterval); FixedXAxisMin = xmin; FixedXAxisMax = xmax; } } private void RecalculateInternalDataset() { if (sharedFixedVariables == null) return; // we expand the range in order to get nice tick intervals on the x axis double xmin, xmax, xinterval; ChartUtil.CalculateAxisInterval(trainingMin, trainingMax, XAxisTicks, out xmin, out xmax, out xinterval); if (FixedXAxisMin.HasValue) xmin = FixedXAxisMin.Value; if (FixedXAxisMax.HasValue) xmax = FixedXAxisMax.Value; double step = (xmax - xmin) / drawingSteps; var xvalues = new List(); for (int i = 0; i < drawingSteps; i++) xvalues.Add(xmin + i * step); var variables = sharedFixedVariables.DoubleVariables.ToList(); internalDataset = new ModifiableDataset(variables, variables.Select(x => x == FreeVariable ? xvalues : Enumerable.Repeat(sharedFixedVariables.GetDoubleValue(x, 0), xvalues.Count).ToList() ) ); } private Tuple CreateSeries(IRegressionSolution solution) { var series = new Series { ChartType = SeriesChartType.Line, Name = solution.ProblemData.TargetVariable + " " + solutions.IndexOf(solution) }; series.LegendText = series.Name; var confidenceBoundSolution = solution as IConfidenceBoundRegressionSolution; Series confidenceIntervalSeries = null; if (confidenceBoundSolution != null) { confidenceIntervalSeries = new Series { ChartType = SeriesChartType.Range, YValuesPerPoint = 2, Name = "95% Conf. Interval " + series.Name, IsVisibleInLegend = false }; } return Tuple.Create(series, confidenceIntervalSeries); } private void OrderAndColorSeries() { chart.SuspendRepaint(); chart.Series.Clear(); // Add mean series for applying palette colors foreach (var solution in solutions) { chart.Series.Add(seriesCache[solution]); } chart.Palette = ChartColorPalette.BrightPastel; chart.ApplyPaletteColors(); chart.Palette = ChartColorPalette.None; // Add confidence interval series before its coresponding series for correct z index foreach (var solution in solutions) { Series ciSeries; if (ciSeriesCache.TryGetValue(solution, out ciSeries)) { var series = seriesCache[solution]; ciSeries.Color = Color.FromArgb(40, series.Color); int idx = chart.Series.IndexOf(seriesCache[solution]); chart.Series.Insert(idx, ciSeries); } } chart.ResumeRepaint(true); } private async Task UpdateAllSeriesDataAsync(CancellationToken cancellationToken) { var updateTasks = solutions.Select(solution => UpdateSeriesDataAsync(solution, cancellationToken)); double min = double.MaxValue, max = double.MinValue; foreach (var update in updateTasks) { var limit = await update; if (limit.Lower < min) min = limit.Lower; if (limit.Upper > max) max = limit.Upper; } return new DoubleLimit(min, max); } private Task UpdateSeriesDataAsync(IRegressionSolution solution, CancellationToken cancellationToken) { return Task.Run(() => { var xvalues = internalDataset.GetDoubleValues(FreeVariable).ToList(); var yvalues = solution.Model.GetEstimatedValues(internalDataset, Enumerable.Range(0, internalDataset.Rows)).ToList(); double min = double.MaxValue, max = double.MinValue; var series = seriesCache[solution]; for (int i = 0; i < xvalues.Count; i++) { series.Points[i].SetValueXY(xvalues[i], yvalues[i]); if (yvalues[i] < min) min = yvalues[i]; if (yvalues[i] > max) max = yvalues[i]; } var confidenceBoundSolution = solution as IConfidenceBoundRegressionSolution; if (confidenceBoundSolution != null) { var confidenceIntervalSeries = ciSeriesCache[solution]; cancellationToken.ThrowIfCancellationRequested(); var variances = confidenceBoundSolution.Model.GetEstimatedVariances(internalDataset, Enumerable.Range(0, internalDataset.Rows)).ToList(); for (int i = 0; i < xvalues.Count; i++) { var lower = yvalues[i] - 1.96 * Math.Sqrt(variances[i]); var upper = yvalues[i] + 1.96 * Math.Sqrt(variances[i]); confidenceIntervalSeries.Points[i].SetValueXY(xvalues[i], lower, upper); if (lower < min) min = lower; if (upper > max) max = upper; } } cancellationToken.ThrowIfCancellationRequested(); return new DoubleLimit(min, max); }, cancellationToken); } private void ResizeAllSeriesData() { if (internalDataset == null) return; var xvalues = internalDataset.GetDoubleValues(FreeVariable).ToList(); foreach (var solution in solutions) ResizeSeriesData(solution, xvalues); } private void ResizeSeriesData(IRegressionSolution solution, IList xvalues = null) { if (xvalues == null) xvalues = internalDataset.GetDoubleValues(FreeVariable).ToList(); var series = seriesCache[solution]; series.Points.SuspendUpdates(); for (int i = 0; i < xvalues.Count; i++) series.Points.Add(new DataPoint(xvalues[i], 0.0)); series.Points.ResumeUpdates(); Series confidenceIntervalSeries; if (ciSeriesCache.TryGetValue(solution, out confidenceIntervalSeries)) { confidenceIntervalSeries.Points.SuspendUpdates(); for (int i = 0; i < xvalues.Count; i++) confidenceIntervalSeries.Points.Add(new DataPoint(xvalues[i], new[] { -1.0, 1.0 })); confidenceIntervalSeries.Points.ResumeUpdates(); } } public async Task AddSolutionAsync(IRegressionSolution solution) { if (!SolutionsCompatible(solutions.Concat(new[] { solution }))) throw new ArgumentException("The solution is not compatible with the problem data."); if (solutions.Contains(solution)) return; solutions.Add(solution); RecalculateTrainingLimits(true); var series = CreateSeries(solution); seriesCache.Add(solution, series.Item1); if (series.Item2 != null) ciSeriesCache.Add(solution, series.Item2); ResizeSeriesData(solution); OrderAndColorSeries(); await RecalculateAsync(); } public async Task RemoveSolutionAsync(IRegressionSolution solution) { if (!solutions.Remove(solution)) return; RecalculateTrainingLimits(true); seriesCache.Remove(solution); ciSeriesCache.Remove(solution); await RecalculateAsync(); } private static bool SolutionsCompatible(IEnumerable solutions) { foreach (var solution1 in solutions) { var variables1 = solution1.ProblemData.Dataset.DoubleVariables; foreach (var solution2 in solutions) { if (solution1 == solution2) continue; var variables2 = solution2.ProblemData.Dataset.DoubleVariables; if (!variables1.All(variables2.Contains)) return false; } } return true; } private void UpdateOutOfTrainingRangeStripLines() { var axisX = chart.ChartAreas[0].AxisX; var lowerStripLine = axisX.StripLines[0]; var upperStripLine = axisX.StripLines[1]; lowerStripLine.IntervalOffset = axisX.Minimum; lowerStripLine.StripWidth = trainingMin - axisX.Minimum; upperStripLine.IntervalOffset = trainingMax; upperStripLine.StripWidth = axisX.Maximum - trainingMax; } #region Events public event EventHandler VariableValueChanged; public void OnVariableValueChanged(object sender, EventArgs args) { var changed = VariableValueChanged; if (changed == null) return; changed(sender, args); } private void sharedFixedVariables_ItemChanged(object o, EventArgs e) { if (o != sharedFixedVariables) return; var variables = sharedFixedVariables.DoubleVariables.ToList(); var rowIndex = e.Value; var columnIndex = e.Value2; var variableName = variables[columnIndex]; if (variableName == FreeVariable) return; var v = sharedFixedVariables.GetDoubleValue(variableName, rowIndex); var values = new List(Enumerable.Repeat(v, DrawingSteps)); internalDataset.ReplaceVariable(variableName, values); } private double oldCurserPosition = double.NaN; private void chart_AnnotationPositionChanging(object sender, AnnotationPositionChangingEventArgs e) { var step = (trainingMax - trainingMin) / drawingSteps; double newLocation = step * (long)Math.Round(e.NewLocationX / step); var axisX = chart.ChartAreas[0].AxisX; if (newLocation > axisX.Maximum) newLocation = axisX.Maximum; if (newLocation < axisX.Minimum) newLocation = axisX.Minimum; e.NewLocationX = newLocation; var annotation = VerticalLineAnnotation; var x = annotation.X; sharedFixedVariables.SetVariableValue(x, FreeVariable, 0); chart.ChartAreas[0].AxisX.Title = FreeVariable + " : " + x.ToString("N3", CultureInfo.CurrentCulture); chart.Update(); if (!oldCurserPosition.IsAlmost(e.NewLocationX)) OnVariableValueChanged(this, EventArgs.Empty); oldCurserPosition = e.NewLocationX; } private void chart_MouseMove(object sender, MouseEventArgs e) { bool hitCursor = chart.HitTest(e.X, e.Y).ChartElementType == ChartElementType.Annotation; chart.Cursor = hitCursor ? Cursors.VSplit : Cursors.Default; } private void chart_FormatNumber(object sender, FormatNumberEventArgs e) { if (e.ElementType == ChartElementType.AxisLabels) { switch (e.Format) { case "CustomAxisXFormat": break; case "CustomAxisYFormat": var v = e.Value; e.LocalizedValue = string.Format("{0,5}", v); break; default: break; } } } private void chart_DragDrop(object sender, DragEventArgs e) { var data = e.Data.GetData(HeuristicLab.Common.Constants.DragDropDataFormat); if (data != null) { var solution = data as IRegressionSolution; if (!solutions.Contains(solution)) AddSolutionAsync(solution); } } private void chart_DragEnter(object sender, DragEventArgs e) { if (!e.Data.GetDataPresent(HeuristicLab.Common.Constants.DragDropDataFormat)) return; e.Effect = DragDropEffects.None; var data = e.Data.GetData(HeuristicLab.Common.Constants.DragDropDataFormat); var regressionSolution = data as IRegressionSolution; if (regressionSolution != null) { e.Effect = DragDropEffects.Copy; } } #endregion } }