#region License Information
/* HeuristicLab
* Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis {
///
/// Represents a symbolic time-series prognosis model
///
[StorableClass]
[Item(Name = "Symbolic Time-Series Prognosis Model", Description = "Represents a symbolic time series prognosis model.")]
public class SymbolicTimeSeriesPrognosisModel : SymbolicRegressionModel, ISymbolicTimeSeriesPrognosisModel {
public new ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter Interpreter {
get { return (ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter)base.Interpreter; }
}
[StorableConstructor]
protected SymbolicTimeSeriesPrognosisModel(bool deserializing) : base(deserializing) { }
protected SymbolicTimeSeriesPrognosisModel(SymbolicTimeSeriesPrognosisModel original, Cloner cloner) : base(original, cloner) { }
public override IDeepCloneable Clone(Cloner cloner) {
return new SymbolicTimeSeriesPrognosisModel(this, cloner);
}
public SymbolicTimeSeriesPrognosisModel(ISymbolicExpressionTree tree, ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter interpreter, double lowerLimit = double.MinValue, double upperLimit = double.MaxValue) : base(tree, interpreter, lowerLimit, upperLimit) { }
public IEnumerable> GetPrognosedValues(Dataset dataset, IEnumerable rows, IEnumerable horizons) {
var estimatedValues = Interpreter.GetSymbolicExpressionTreeValues(SymbolicExpressionTree, dataset, rows, horizons);
return estimatedValues.Select(predictionPerRow => predictionPerRow.LimitToRange(LowerEstimationLimit, UpperEstimationLimit));
}
public ISymbolicTimeSeriesPrognosisSolution CreateTimeSeriesPrognosisSolution(ITimeSeriesPrognosisProblemData problemData) {
return new SymbolicTimeSeriesPrognosisSolution(this, new TimeSeriesPrognosisProblemData(problemData));
}
ITimeSeriesPrognosisSolution ITimeSeriesPrognosisModel.CreateTimeSeriesPrognosisSolution(ITimeSeriesPrognosisProblemData problemData) {
return CreateTimeSeriesPrognosisSolution(problemData);
}
}
}