1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Diagnostics;
|
---|
4 | using System.Linq;
|
---|
5 | using System.Text;
|
---|
6 | using System.Text.RegularExpressions;
|
---|
7 | using HeuristicLab.Common;
|
---|
8 |
|
---|
9 | namespace HeuristicLab.Problems.GrammaticalOptimization {
|
---|
10 | // must find one of k*sequenceLen sequences where the quality of a sequence is the length of the subsequence containing only correct _phrases_ (of length phraseLen) and starting at the first position
|
---|
11 | // compared to the RoyalSequence problem this problem is harder because the number of different phrases starting at a position is much larger than the number of symbols (grows exponentially with the phrase-length)
|
---|
12 | // if phraseLen = 1 this is the same as the RoyalSequence problem
|
---|
13 | // parameters
|
---|
14 | // - alphabetSize: number of different symbols (max=26)
|
---|
15 | // - phraseLen: the length of a phrase in number of symbols
|
---|
16 | // - sequenceLen: the number of phrases in the correct subsequence (total sequence length is n * phraseLen
|
---|
17 | // - k: the number of correct phrases starting at each position
|
---|
18 | //
|
---|
19 | // this problem should be hard for GP and easy for MCTS (TD should not have an advantage compared to MCTS)
|
---|
20 | // for phraseLen > 1 this should be harder than RoyalSymbolProblem
|
---|
21 | public class RoyalPhraseSequenceProblem : IProblem {
|
---|
22 |
|
---|
23 | private readonly IGrammar grammar;
|
---|
24 | private readonly double correctReward;
|
---|
25 | private readonly double incorrectReward;
|
---|
26 | private readonly int k;
|
---|
27 | private readonly int sequenceLen;
|
---|
28 | private readonly int alphabetSize;
|
---|
29 | private readonly int phraseLen;
|
---|
30 | private readonly SortedSet<string>[] optimalPhrasesForPos;
|
---|
31 |
|
---|
32 | public RoyalPhraseSequenceProblem(Random rand, int alphabetSize, int sequenceLen, int phraseLen = 1, int k = 1, double correctReward = 1.0, double incorrectReward = 0.0) {
|
---|
33 | if (alphabetSize <= 0 || alphabetSize > 26) throw new ArgumentException();
|
---|
34 | if (sequenceLen <= 0) throw new ArgumentException();
|
---|
35 | if (k < 1 || k > alphabetSize) throw new ArgumentException();
|
---|
36 | if (phraseLen < 1) throw new ArgumentException();
|
---|
37 | if (correctReward <= incorrectReward) throw new ArgumentException();
|
---|
38 |
|
---|
39 | this.alphabetSize = alphabetSize;
|
---|
40 | this.sequenceLen = sequenceLen;
|
---|
41 | this.phraseLen = phraseLen;
|
---|
42 | this.k = k;
|
---|
43 | this.correctReward = correctReward;
|
---|
44 | this.incorrectReward = incorrectReward;
|
---|
45 | var sentenceSymbol = 'S';
|
---|
46 | var terminalSymbols = Enumerable.Range(0, alphabetSize).Select(off => (char)((byte)'a' + off)).ToArray();
|
---|
47 | var nonTerminalSymbols = new char[] { 'S' };
|
---|
48 | var rules = terminalSymbols.Select(t => Tuple.Create('S', t.ToString()))
|
---|
49 | .Concat(terminalSymbols.Select(t => Tuple.Create('S', t + "S")));
|
---|
50 |
|
---|
51 | this.grammar = new Grammar(sentenceSymbol, terminalSymbols, nonTerminalSymbols, rules);
|
---|
52 |
|
---|
53 | this.optimalPhrasesForPos = new SortedSet<string>[sequenceLen];
|
---|
54 | for (int i = 0; i < sequenceLen; i++) {
|
---|
55 | optimalPhrasesForPos[i] = new SortedSet<string>();
|
---|
56 | for (int j = 0; j < k; j++) {
|
---|
57 | string phrase = "";
|
---|
58 | do {
|
---|
59 | for (int l = 0; l < phraseLen; l++) {
|
---|
60 | phrase += terminalSymbols.SelectRandom(rand);
|
---|
61 | }
|
---|
62 | } while (optimalPhrasesForPos[i].Contains(phrase)); // don't allow duplicate phrases
|
---|
63 | optimalPhrasesForPos[i].Add(phrase);
|
---|
64 | }
|
---|
65 | }
|
---|
66 |
|
---|
67 | Debug.Assert(Evaluate(BestKnownSolution)/BestKnownQuality(phraseLen * sequenceLen) == 1.0);
|
---|
68 | }
|
---|
69 |
|
---|
70 | public double BestKnownQuality(int maxLen) {
|
---|
71 | return Math.Min(maxLen / phraseLen, sequenceLen) * correctReward; // integer division
|
---|
72 | }
|
---|
73 |
|
---|
74 | public string BestKnownSolution {
|
---|
75 | get {
|
---|
76 | string solution = "";
|
---|
77 | for (int i = 0; i < sequenceLen; i++) {
|
---|
78 | solution += optimalPhrasesForPos[i].First();
|
---|
79 | }
|
---|
80 | return solution;
|
---|
81 | }
|
---|
82 | }
|
---|
83 |
|
---|
84 | public IGrammar Grammar {
|
---|
85 | get { return grammar; }
|
---|
86 | }
|
---|
87 |
|
---|
88 | public double Evaluate(string sentence) {
|
---|
89 | // sentence must contain only terminal symbols, we are not checking if the sentence is syntactically valid here because it would be too slow!
|
---|
90 | Debug.Assert(sentence.Any(c => grammar.IsTerminal(c)));
|
---|
91 | // as long as only correct symbols are found we increase the reward by +1
|
---|
92 | // on the first incorrect symbol we return
|
---|
93 | var reward = 0.0;
|
---|
94 | for (int i = 0; i < Math.Min(sentence.Length / phraseLen, sequenceLen); i++) {
|
---|
95 | if (optimalPhrasesForPos[i].Contains(sentence.Substring(i * phraseLen, phraseLen))) {
|
---|
96 | reward += correctReward;
|
---|
97 | } else {
|
---|
98 | // alternatively reduce reward by number of remaining phrases
|
---|
99 | return Math.Max(0.0, reward + incorrectReward * (sentence.Length / phraseLen - i));
|
---|
100 | // stop on first incorrect symbol and return reward
|
---|
101 | //return reward;
|
---|
102 | }
|
---|
103 | }
|
---|
104 | return reward;
|
---|
105 | }
|
---|
106 |
|
---|
107 | public string CanonicalRepresentation(string terminalPhrase) {
|
---|
108 | return terminalPhrase;
|
---|
109 | }
|
---|
110 | }
|
---|
111 | }
|
---|