1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Diagnostics;
|
---|
4 | using System.Linq;
|
---|
5 | using System.Text;
|
---|
6 | using System.Threading.Tasks;
|
---|
7 | using HeuristicLab.Common;
|
---|
8 |
|
---|
9 | namespace HeuristicLab.Algorithms.Bandits.BanditPolicies {
|
---|
10 | /* see: Streeter and Smith: A simple distribution-free approach to the max k-armed bandit problem, Proceedings of the 12th
|
---|
11 | International Conference, CP 2006, Nantes, France, September 25-29, 2006. pp 560-574 */
|
---|
12 |
|
---|
13 | public class ThresholdAscentPolicy : IBanditPolicy {
|
---|
14 | public const int numBins = 101;
|
---|
15 | public const double binSize = 1.0 / (numBins - 1);
|
---|
16 |
|
---|
17 | private class ThresholdAscentActionInfo : IBanditPolicyActionInfo {
|
---|
18 |
|
---|
19 | // for each arm store the number of observed rewards for each bin of size delta
|
---|
20 | // for delta = 0.01 we have 101 bins
|
---|
21 | // the first bin is freq of rewards >= 0 // all
|
---|
22 | // the second bin is freq of rewards > 0
|
---|
23 | // the third bin is freq of rewards > 0.01
|
---|
24 | // the last bin is for rewards > 0.99
|
---|
25 | //
|
---|
26 | // (also see RewardBin function)
|
---|
27 | public int[] rewardHistogram = new int[numBins]; // for performance reasons we store cumulative counts (freq of rewards > lower threshold)
|
---|
28 | public int Tries { get; private set; }
|
---|
29 | public int thresholdBin = 1;
|
---|
30 | //public double MaxReward { get { return Value; }}
|
---|
31 | public double MaxReward { get; private set; }
|
---|
32 | public double Value {
|
---|
33 | get {
|
---|
34 | if (Tries == 0.0) return double.PositiveInfinity;
|
---|
35 | return rewardHistogram[thresholdBin] / (double)Tries;
|
---|
36 | }
|
---|
37 | }
|
---|
38 |
|
---|
39 | public void UpdateReward(double reward) {
|
---|
40 | MaxReward = Math.Max(MaxReward, reward);
|
---|
41 | Tries++;
|
---|
42 | for (var idx = thresholdBin; idx <= RewardBin(reward); idx++)
|
---|
43 | rewardHistogram[idx]++;
|
---|
44 | }
|
---|
45 |
|
---|
46 | public void Reset() {
|
---|
47 | MaxReward = double.NegativeInfinity;
|
---|
48 | Tries = 0;
|
---|
49 | thresholdBin = 1;
|
---|
50 | Array.Clear(rewardHistogram, 0, rewardHistogram.Length);
|
---|
51 | }
|
---|
52 |
|
---|
53 | // maps a reward value to it's bin
|
---|
54 | private static int RewardBin(double reward) {
|
---|
55 | Debug.Assert(reward >= 0 && reward <= 1.0);
|
---|
56 | // reward = 0 => 0
|
---|
57 | // ]0.00 .. 0.01] => 1
|
---|
58 | // ]0.01 .. 0.02] => 2
|
---|
59 | // ...
|
---|
60 | // ]0.99 .. 1.00] => 100
|
---|
61 | if (reward <= 0) return 0;
|
---|
62 | return (int)Math.Ceiling((reward / binSize));
|
---|
63 | }
|
---|
64 | }
|
---|
65 |
|
---|
66 | private readonly int s;
|
---|
67 | private readonly double delta;
|
---|
68 |
|
---|
69 | public ThresholdAscentPolicy(int s = 100, double delta = 0.05) {
|
---|
70 | this.s = s;
|
---|
71 | this.delta = delta;
|
---|
72 | }
|
---|
73 |
|
---|
74 | private double U(double mu, double totalTries, int n, int k) {
|
---|
75 | //var alpha = Math.Log(2.0 * totalTries * k / delta);
|
---|
76 | double alpha = Math.Log(2) + Math.Log(totalTries) + Math.Log(k) - Math.Log(delta);
|
---|
77 | return mu + (alpha + Math.Sqrt(2 * n * mu * alpha + alpha * alpha)) / n;
|
---|
78 | }
|
---|
79 |
|
---|
80 |
|
---|
81 | public int SelectAction(Random random, IEnumerable<IBanditPolicyActionInfo> actionInfos) {
|
---|
82 | Debug.Assert(actionInfos.Any());
|
---|
83 | var myActionInfos = actionInfos.OfType<ThresholdAscentActionInfo>();
|
---|
84 | UpdateThreshold(myActionInfos);
|
---|
85 |
|
---|
86 | var bestActions = new List<int>();
|
---|
87 | double bestQ = double.NegativeInfinity;
|
---|
88 | int k = myActionInfos.Count();
|
---|
89 | //var totalTries = myActionInfos.Sum(a => a.Tries);
|
---|
90 | var totalTries = 100000;
|
---|
91 | int aIdx = -1;
|
---|
92 | foreach (var aInfo in myActionInfos) {
|
---|
93 | aIdx++;
|
---|
94 | double q;
|
---|
95 | if (aInfo.Tries == 0) {
|
---|
96 | q = double.PositiveInfinity;
|
---|
97 | } else {
|
---|
98 | double mu = aInfo.Value; // probability of rewards > T
|
---|
99 | q = U(mu, totalTries, aInfo.Tries, k); // totalTries is max iterations in original paper
|
---|
100 | }
|
---|
101 | if (q > bestQ) {
|
---|
102 | bestQ = q;
|
---|
103 | bestActions.Clear();
|
---|
104 | bestActions.Add(aIdx);
|
---|
105 | } else if (q.IsAlmost(bestQ)) {
|
---|
106 | bestActions.Add(aIdx);
|
---|
107 | }
|
---|
108 | }
|
---|
109 | Debug.Assert(bestActions.Any());
|
---|
110 | return bestActions.SelectRandom(random);
|
---|
111 | }
|
---|
112 |
|
---|
113 |
|
---|
114 | private void UpdateThreshold(IEnumerable<ThresholdAscentActionInfo> actionInfos) {
|
---|
115 | var thresholdBin = 1; // first bin to check is bin idx 1 == freq of rewards > 0
|
---|
116 | while (thresholdBin < (numBins - 1) && actionInfos.Sum(a => a.rewardHistogram[thresholdBin]) >= s) {
|
---|
117 | thresholdBin++;
|
---|
118 | // Console.WriteLine("New threshold {0:F2}", T);
|
---|
119 | }
|
---|
120 | foreach (var aInfo in actionInfos) {
|
---|
121 | aInfo.thresholdBin = thresholdBin;
|
---|
122 | }
|
---|
123 | }
|
---|
124 |
|
---|
125 |
|
---|
126 | public IBanditPolicyActionInfo CreateActionInfo() {
|
---|
127 | return new ThresholdAscentActionInfo();
|
---|
128 | }
|
---|
129 |
|
---|
130 | public override string ToString() {
|
---|
131 | return string.Format("ThresholdAscentPolicy({0},{1:F2})", s, delta);
|
---|
132 | }
|
---|
133 |
|
---|
134 | }
|
---|
135 | }
|
---|