/// /// This file is part of ILNumerics Community Edition. /// /// ILNumerics Community Edition - high performance computing for applications. /// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net /// /// ILNumerics Community Edition is free software: you can redistribute it and/or modify /// it under the terms of the GNU General Public License version 3 as published by /// the Free Software Foundation. /// /// ILNumerics Community Edition is distributed in the hope that it will be useful, /// but WITHOUT ANY WARRANTY; without even the implied warranty of /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the /// GNU General Public License for more details. /// /// You should have received a copy of the GNU General Public License /// along with ILNumerics Community Edition. See the file License.txt in the root /// of your distribution package. If not, see . /// /// In addition this software uses the following components and/or licenses: /// /// ================================================================================= /// The Open Toolkit Library License /// /// Copyright (c) 2006 - 2009 the Open Toolkit library. /// /// Permission is hereby granted, free of charge, to any person obtaining a copy /// of this software and associated documentation files (the "Software"), to deal /// in the Software without restriction, including without limitation the rights to /// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of /// the Software, and to permit persons to whom the Software is furnished to do /// so, subject to the following conditions: /// /// The above copyright notice and this permission notice shall be included in all /// copies or substantial portions of the Software. /// /// ================================================================================= /// using System; using System.Collections.Generic; using System.Text; using ILNumerics; using ILNumerics.Exceptions; using ILNumerics.Storage; using ILNumerics.Misc; namespace ILNumerics { public partial class ILMath { #region HYCALPER AUTO GENERATED CODE /// Round to nearest integer /// Input array /// Array of same size as A with elements rounded to nearest integer /// If the input array is empty, an empty array will be returned. /// The array returned will be a dense array. public unsafe static ILRetArray round (ILInArray< complex > A) { using (ILScope.Enter(A)) { if (A.IsEmpty) return new ILRetArray(A.Size); ILSize inDim = A.Size; complex[] arrA = A.GetArrayForRead(); complex [] retArr; int outLen = inDim.NumberOfElements; bool inplace = true; if (!A.TryGetStorage4InplaceOp(out retArr)) { retArr = ILMemoryPool.Pool.New(outLen); inplace = false; } int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength, workerCount = 1; if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) { if (outLen / workItemCount > Settings.s_minParallelElement1Count) { workItemLength = outLen / workItemCount; //workItemLength = (int)((double)outLen / workItemCount * 1.05); } else { workItemLength = outLen / 2; workItemCount = 2; } } else { workItemLength = outLen; workItemCount = 1; } ILDenseStorage retStorage = new ILDenseStorage(retArr, inDim); Action worker = data => { Tuple range = (Tuple)data; complex* cp = ((complex*)range.Item4 + range.Item1); int len = range.Item2; if (range.Item5) { // inplace while (len > 20) { cp[0] = complex.Round(cp[0] ) /*dummy*/; cp[1] = complex.Round(cp[1] ) /*dummy*/; cp[2] = complex.Round(cp[2] ) /*dummy*/; cp[3] = complex.Round(cp[3] ) /*dummy*/; cp[4] = complex.Round(cp[4] ) /*dummy*/; cp[5] = complex.Round(cp[5] ) /*dummy*/; cp[6] = complex.Round(cp[6] ) /*dummy*/; cp[7] = complex.Round(cp[7] ) /*dummy*/; cp[8] = complex.Round(cp[8] ) /*dummy*/; cp[9] = complex.Round(cp[9] ) /*dummy*/; cp[10] = complex.Round(cp[10] ) /*dummy*/; cp[11] = complex.Round(cp[11] ) /*dummy*/; cp[12] = complex.Round(cp[12] ) /*dummy*/; cp[13] = complex.Round(cp[13] ) /*dummy*/; cp[14] = complex.Round(cp[14] ) /*dummy*/; cp[15] = complex.Round(cp[15] ) /*dummy*/; cp[16] = complex.Round(cp[16] ) /*dummy*/; cp[17] = complex.Round(cp[17] ) /*dummy*/; cp[18] = complex.Round(cp[18] ) /*dummy*/; cp[19] = complex.Round(cp[19] ) /*dummy*/; cp[20] = complex.Round(cp[20] ) /*dummy*/; cp+=21; len -= 21; } while (len-- > 0) { *cp = complex.Round(*cp ) /*dummy*/; cp++; } } else { complex* ap = ((complex*)range.Item3 + range.Item1); while (len > 20) { cp[0] = complex.Round(ap[0] ) /*dummy*/; cp[1] = complex.Round(ap[1] ) /*dummy*/; cp[2] = complex.Round(ap[2] ) /*dummy*/; cp[3] = complex.Round(ap[3] ) /*dummy*/; cp[4] = complex.Round(ap[4] ) /*dummy*/; cp[5] = complex.Round(ap[5] ) /*dummy*/; cp[6] = complex.Round(ap[6] ) /*dummy*/; cp[7] = complex.Round(ap[7] ) /*dummy*/; cp[8] = complex.Round(ap[8] ) /*dummy*/; cp[9] = complex.Round(ap[9] ) /*dummy*/; cp[10] = complex.Round(ap[10] ) /*dummy*/; cp[11] = complex.Round(ap[11] ) /*dummy*/; cp[12] = complex.Round(ap[12] ) /*dummy*/; cp[13] = complex.Round(ap[13] ) /*dummy*/; cp[14] = complex.Round(ap[14] ) /*dummy*/; cp[15] = complex.Round(ap[15] ) /*dummy*/; cp[16] = complex.Round(ap[16] ) /*dummy*/; cp[17] = complex.Round(ap[17] ) /*dummy*/; cp[18] = complex.Round(ap[18] ) /*dummy*/; cp[19] = complex.Round(ap[19] ) /*dummy*/; cp[20] = complex.Round(ap[20] ) /*dummy*/; ap += 21; cp += 21; len -= 21; } while (len-- > 0) { *cp = complex.Round(*ap ) /*dummy*/; ap++; cp++; } } System.Threading.Interlocked.Decrement(ref workerCount); }; fixed ( complex* arrAP = arrA) fixed ( complex* retArrP = retArr) { for (; i < workItemCount - 1; i++) { Tuple range = new Tuple (i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)retArrP, inplace); System.Threading.Interlocked.Increment(ref workerCount); ILThreadPool.QueueUserWorkItem(i,worker, range); } // the last (or may the only) chunk is done right here worker(new Tuple (i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)retArrP, inplace)); ILThreadPool.Wait4Workers(ref workerCount); } return new ILRetArray(retStorage); } } /// Round to nearest integer /// Input array /// Array of same size as A with elements rounded to nearest integer /// If the input array is empty, an empty array will be returned. /// The array returned will be a dense array. public unsafe static ILRetArray round (ILInArray< fcomplex > A) { using (ILScope.Enter(A)) { if (A.IsEmpty) return new ILRetArray(A.Size); ILSize inDim = A.Size; fcomplex[] arrA = A.GetArrayForRead(); fcomplex [] retArr; int outLen = inDim.NumberOfElements; bool inplace = true; if (!A.TryGetStorage4InplaceOp(out retArr)) { retArr = ILMemoryPool.Pool.New(outLen); inplace = false; } int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength, workerCount = 1; if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) { if (outLen / workItemCount > Settings.s_minParallelElement1Count) { workItemLength = outLen / workItemCount; //workItemLength = (int)((double)outLen / workItemCount * 1.05); } else { workItemLength = outLen / 2; workItemCount = 2; } } else { workItemLength = outLen; workItemCount = 1; } ILDenseStorage retStorage = new ILDenseStorage(retArr, inDim); Action worker = data => { Tuple range = (Tuple)data; fcomplex* cp = ((fcomplex*)range.Item4 + range.Item1); int len = range.Item2; if (range.Item5) { // inplace while (len > 20) { cp[0] = fcomplex.Round(cp[0] ) /*dummy*/; cp[1] = fcomplex.Round(cp[1] ) /*dummy*/; cp[2] = fcomplex.Round(cp[2] ) /*dummy*/; cp[3] = fcomplex.Round(cp[3] ) /*dummy*/; cp[4] = fcomplex.Round(cp[4] ) /*dummy*/; cp[5] = fcomplex.Round(cp[5] ) /*dummy*/; cp[6] = fcomplex.Round(cp[6] ) /*dummy*/; cp[7] = fcomplex.Round(cp[7] ) /*dummy*/; cp[8] = fcomplex.Round(cp[8] ) /*dummy*/; cp[9] = fcomplex.Round(cp[9] ) /*dummy*/; cp[10] = fcomplex.Round(cp[10] ) /*dummy*/; cp[11] = fcomplex.Round(cp[11] ) /*dummy*/; cp[12] = fcomplex.Round(cp[12] ) /*dummy*/; cp[13] = fcomplex.Round(cp[13] ) /*dummy*/; cp[14] = fcomplex.Round(cp[14] ) /*dummy*/; cp[15] = fcomplex.Round(cp[15] ) /*dummy*/; cp[16] = fcomplex.Round(cp[16] ) /*dummy*/; cp[17] = fcomplex.Round(cp[17] ) /*dummy*/; cp[18] = fcomplex.Round(cp[18] ) /*dummy*/; cp[19] = fcomplex.Round(cp[19] ) /*dummy*/; cp[20] = fcomplex.Round(cp[20] ) /*dummy*/; cp+=21; len -= 21; } while (len-- > 0) { *cp = fcomplex.Round(*cp ) /*dummy*/; cp++; } } else { fcomplex* ap = ((fcomplex*)range.Item3 + range.Item1); while (len > 20) { cp[0] = fcomplex.Round(ap[0] ) /*dummy*/; cp[1] = fcomplex.Round(ap[1] ) /*dummy*/; cp[2] = fcomplex.Round(ap[2] ) /*dummy*/; cp[3] = fcomplex.Round(ap[3] ) /*dummy*/; cp[4] = fcomplex.Round(ap[4] ) /*dummy*/; cp[5] = fcomplex.Round(ap[5] ) /*dummy*/; cp[6] = fcomplex.Round(ap[6] ) /*dummy*/; cp[7] = fcomplex.Round(ap[7] ) /*dummy*/; cp[8] = fcomplex.Round(ap[8] ) /*dummy*/; cp[9] = fcomplex.Round(ap[9] ) /*dummy*/; cp[10] = fcomplex.Round(ap[10] ) /*dummy*/; cp[11] = fcomplex.Round(ap[11] ) /*dummy*/; cp[12] = fcomplex.Round(ap[12] ) /*dummy*/; cp[13] = fcomplex.Round(ap[13] ) /*dummy*/; cp[14] = fcomplex.Round(ap[14] ) /*dummy*/; cp[15] = fcomplex.Round(ap[15] ) /*dummy*/; cp[16] = fcomplex.Round(ap[16] ) /*dummy*/; cp[17] = fcomplex.Round(ap[17] ) /*dummy*/; cp[18] = fcomplex.Round(ap[18] ) /*dummy*/; cp[19] = fcomplex.Round(ap[19] ) /*dummy*/; cp[20] = fcomplex.Round(ap[20] ) /*dummy*/; ap += 21; cp += 21; len -= 21; } while (len-- > 0) { *cp = fcomplex.Round(*ap ) /*dummy*/; ap++; cp++; } } System.Threading.Interlocked.Decrement(ref workerCount); }; fixed ( fcomplex* arrAP = arrA) fixed ( fcomplex* retArrP = retArr) { for (; i < workItemCount - 1; i++) { Tuple range = new Tuple (i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)retArrP, inplace); System.Threading.Interlocked.Increment(ref workerCount); ILThreadPool.QueueUserWorkItem(i,worker, range); } // the last (or may the only) chunk is done right here worker(new Tuple (i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)retArrP, inplace)); ILThreadPool.Wait4Workers(ref workerCount); } return new ILRetArray(retStorage); } } /// Round to nearest integer /// Input array /// Array of same size as A with elements rounded to nearest integer /// If the input array is empty, an empty array will be returned. /// The array returned will be a dense array. public unsafe static ILRetArray round (ILInArray< float > A) { using (ILScope.Enter(A)) { if (A.IsEmpty) return new ILRetArray(A.Size); ILSize inDim = A.Size; float[] arrA = A.GetArrayForRead(); float [] retArr; int outLen = inDim.NumberOfElements; bool inplace = true; if (!A.TryGetStorage4InplaceOp(out retArr)) { retArr = ILMemoryPool.Pool.New(outLen); inplace = false; } int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength, workerCount = 1; if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) { if (outLen / workItemCount > Settings.s_minParallelElement1Count) { workItemLength = outLen / workItemCount; //workItemLength = (int)((double)outLen / workItemCount * 1.05); } else { workItemLength = outLen / 2; workItemCount = 2; } } else { workItemLength = outLen; workItemCount = 1; } ILDenseStorage retStorage = new ILDenseStorage(retArr, inDim); Action worker = data => { Tuple range = (Tuple)data; float* cp = ((float*)range.Item4 + range.Item1); int len = range.Item2; if (range.Item5) { // inplace while (len > 20) { cp[0] = (float)Math.Round(cp[0] ) /*dummy*/; cp[1] = (float)Math.Round(cp[1] ) /*dummy*/; cp[2] = (float)Math.Round(cp[2] ) /*dummy*/; cp[3] = (float)Math.Round(cp[3] ) /*dummy*/; cp[4] = (float)Math.Round(cp[4] ) /*dummy*/; cp[5] = (float)Math.Round(cp[5] ) /*dummy*/; cp[6] = (float)Math.Round(cp[6] ) /*dummy*/; cp[7] = (float)Math.Round(cp[7] ) /*dummy*/; cp[8] = (float)Math.Round(cp[8] ) /*dummy*/; cp[9] = (float)Math.Round(cp[9] ) /*dummy*/; cp[10] = (float)Math.Round(cp[10] ) /*dummy*/; cp[11] = (float)Math.Round(cp[11] ) /*dummy*/; cp[12] = (float)Math.Round(cp[12] ) /*dummy*/; cp[13] = (float)Math.Round(cp[13] ) /*dummy*/; cp[14] = (float)Math.Round(cp[14] ) /*dummy*/; cp[15] = (float)Math.Round(cp[15] ) /*dummy*/; cp[16] = (float)Math.Round(cp[16] ) /*dummy*/; cp[17] = (float)Math.Round(cp[17] ) /*dummy*/; cp[18] = (float)Math.Round(cp[18] ) /*dummy*/; cp[19] = (float)Math.Round(cp[19] ) /*dummy*/; cp[20] = (float)Math.Round(cp[20] ) /*dummy*/; cp+=21; len -= 21; } while (len-- > 0) { *cp = (float)Math.Round(*cp ) /*dummy*/; cp++; } } else { float* ap = ((float*)range.Item3 + range.Item1); while (len > 20) { cp[0] = (float)Math.Round(ap[0] ) /*dummy*/; cp[1] = (float)Math.Round(ap[1] ) /*dummy*/; cp[2] = (float)Math.Round(ap[2] ) /*dummy*/; cp[3] = (float)Math.Round(ap[3] ) /*dummy*/; cp[4] = (float)Math.Round(ap[4] ) /*dummy*/; cp[5] = (float)Math.Round(ap[5] ) /*dummy*/; cp[6] = (float)Math.Round(ap[6] ) /*dummy*/; cp[7] = (float)Math.Round(ap[7] ) /*dummy*/; cp[8] = (float)Math.Round(ap[8] ) /*dummy*/; cp[9] = (float)Math.Round(ap[9] ) /*dummy*/; cp[10] = (float)Math.Round(ap[10] ) /*dummy*/; cp[11] = (float)Math.Round(ap[11] ) /*dummy*/; cp[12] = (float)Math.Round(ap[12] ) /*dummy*/; cp[13] = (float)Math.Round(ap[13] ) /*dummy*/; cp[14] = (float)Math.Round(ap[14] ) /*dummy*/; cp[15] = (float)Math.Round(ap[15] ) /*dummy*/; cp[16] = (float)Math.Round(ap[16] ) /*dummy*/; cp[17] = (float)Math.Round(ap[17] ) /*dummy*/; cp[18] = (float)Math.Round(ap[18] ) /*dummy*/; cp[19] = (float)Math.Round(ap[19] ) /*dummy*/; cp[20] = (float)Math.Round(ap[20] ) /*dummy*/; ap += 21; cp += 21; len -= 21; } while (len-- > 0) { *cp = (float)Math.Round(*ap ) /*dummy*/; ap++; cp++; } } System.Threading.Interlocked.Decrement(ref workerCount); }; fixed ( float* arrAP = arrA) fixed ( float* retArrP = retArr) { for (; i < workItemCount - 1; i++) { Tuple range = new Tuple (i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)retArrP, inplace); System.Threading.Interlocked.Increment(ref workerCount); ILThreadPool.QueueUserWorkItem(i,worker, range); } // the last (or may the only) chunk is done right here worker(new Tuple (i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)retArrP, inplace)); ILThreadPool.Wait4Workers(ref workerCount); } return new ILRetArray(retStorage); } } /// Round to nearest integer /// Input array /// Array of same size as A with elements rounded to nearest integer /// If the input array is empty, an empty array will be returned. /// The array returned will be a dense array. public unsafe static ILRetArray round (ILInArray< double > A) { using (ILScope.Enter(A)) { if (A.IsEmpty) return new ILRetArray(A.Size); ILSize inDim = A.Size; double[] arrA = A.GetArrayForRead(); double [] retArr; int outLen = inDim.NumberOfElements; bool inplace = true; if (!A.TryGetStorage4InplaceOp(out retArr)) { retArr = ILMemoryPool.Pool.New(outLen); inplace = false; } int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength, workerCount = 1; if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) { if (outLen / workItemCount > Settings.s_minParallelElement1Count) { workItemLength = outLen / workItemCount; //workItemLength = (int)((double)outLen / workItemCount * 1.05); } else { workItemLength = outLen / 2; workItemCount = 2; } } else { workItemLength = outLen; workItemCount = 1; } ILDenseStorage retStorage = new ILDenseStorage(retArr, inDim); Action worker = data => { Tuple range = (Tuple)data; double* cp = ((double*)range.Item4 + range.Item1); int len = range.Item2; if (range.Item5) { // inplace while (len > 20) { cp[0] = Math.Round(cp[0] ) /*dummy*/; cp[1] = Math.Round(cp[1] ) /*dummy*/; cp[2] = Math.Round(cp[2] ) /*dummy*/; cp[3] = Math.Round(cp[3] ) /*dummy*/; cp[4] = Math.Round(cp[4] ) /*dummy*/; cp[5] = Math.Round(cp[5] ) /*dummy*/; cp[6] = Math.Round(cp[6] ) /*dummy*/; cp[7] = Math.Round(cp[7] ) /*dummy*/; cp[8] = Math.Round(cp[8] ) /*dummy*/; cp[9] = Math.Round(cp[9] ) /*dummy*/; cp[10] = Math.Round(cp[10] ) /*dummy*/; cp[11] = Math.Round(cp[11] ) /*dummy*/; cp[12] = Math.Round(cp[12] ) /*dummy*/; cp[13] = Math.Round(cp[13] ) /*dummy*/; cp[14] = Math.Round(cp[14] ) /*dummy*/; cp[15] = Math.Round(cp[15] ) /*dummy*/; cp[16] = Math.Round(cp[16] ) /*dummy*/; cp[17] = Math.Round(cp[17] ) /*dummy*/; cp[18] = Math.Round(cp[18] ) /*dummy*/; cp[19] = Math.Round(cp[19] ) /*dummy*/; cp[20] = Math.Round(cp[20] ) /*dummy*/; cp+=21; len -= 21; } while (len-- > 0) { *cp = Math.Round(*cp ) /*dummy*/; cp++; } } else { double* ap = ((double*)range.Item3 + range.Item1); while (len > 20) { cp[0] = Math.Round(ap[0] ) /*dummy*/; cp[1] = Math.Round(ap[1] ) /*dummy*/; cp[2] = Math.Round(ap[2] ) /*dummy*/; cp[3] = Math.Round(ap[3] ) /*dummy*/; cp[4] = Math.Round(ap[4] ) /*dummy*/; cp[5] = Math.Round(ap[5] ) /*dummy*/; cp[6] = Math.Round(ap[6] ) /*dummy*/; cp[7] = Math.Round(ap[7] ) /*dummy*/; cp[8] = Math.Round(ap[8] ) /*dummy*/; cp[9] = Math.Round(ap[9] ) /*dummy*/; cp[10] = Math.Round(ap[10] ) /*dummy*/; cp[11] = Math.Round(ap[11] ) /*dummy*/; cp[12] = Math.Round(ap[12] ) /*dummy*/; cp[13] = Math.Round(ap[13] ) /*dummy*/; cp[14] = Math.Round(ap[14] ) /*dummy*/; cp[15] = Math.Round(ap[15] ) /*dummy*/; cp[16] = Math.Round(ap[16] ) /*dummy*/; cp[17] = Math.Round(ap[17] ) /*dummy*/; cp[18] = Math.Round(ap[18] ) /*dummy*/; cp[19] = Math.Round(ap[19] ) /*dummy*/; cp[20] = Math.Round(ap[20] ) /*dummy*/; ap += 21; cp += 21; len -= 21; } while (len-- > 0) { *cp = Math.Round(*ap ) /*dummy*/; ap++; cp++; } } System.Threading.Interlocked.Decrement(ref workerCount); }; fixed ( double* arrAP = arrA) fixed ( double* retArrP = retArr) { for (; i < workItemCount - 1; i++) { Tuple range = new Tuple (i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)retArrP, inplace); System.Threading.Interlocked.Increment(ref workerCount); ILThreadPool.QueueUserWorkItem(i,worker, range); } // the last (or may the only) chunk is done right here worker(new Tuple (i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)retArrP, inplace)); ILThreadPool.Wait4Workers(ref workerCount); } return new ILRetArray(retStorage); } } #endregion HYCALPER AUTO GENERATED CODE } }