///
/// This file is part of ILNumerics Community Edition.
///
/// ILNumerics Community Edition - high performance computing for applications.
/// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
///
/// ILNumerics Community Edition is free software: you can redistribute it and/or modify
/// it under the terms of the GNU General Public License version 3 as published by
/// the Free Software Foundation.
///
/// ILNumerics Community Edition is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with ILNumerics Community Edition. See the file License.txt in the root
/// of your distribution package. If not, see .
///
/// In addition this software uses the following components and/or licenses:
///
/// =================================================================================
/// The Open Toolkit Library License
///
/// Copyright (c) 2006 - 2009 the Open Toolkit library.
///
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights to
/// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
/// the Software, and to permit persons to whom the Software is furnished to do
/// so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in all
/// copies or substantial portions of the Software.
///
/// =================================================================================
///
using System;
using System.Collections.Generic;
using System.Text;
using ILNumerics.Storage;
using ILNumerics.Misc;
using ILNumerics.Exceptions;
namespace ILNumerics {
public partial class ILMath {
///
/// Rank of matrix A
///
/// Input matrix
/// [Optional]Tolerance used to decide, if a singular value is
/// treated as zero. If a value < 0 is specified the tolerance will be determined automatically (see below - default = -1.0)
/// Rank of matrix A
/// The rank is the number of singular values greater than
/// tolerance. If tolerance is smaller than zero, the following equation is used as
/// default: \\
/// tol = length(A) * norm(A) * MachineParameterDouble.epsilon \\
/// with
///
/// - length(A) - the longest dimension of A
/// - norm(A) being the largest singular value of A,
/// - MachineParameterDouble.eps - the distance between 1 and the smallest next greater value
///
///
public static ILRetArray< double> rank( ILInArray< double> A, double tolerance = -1.0 ) {
using (ILScope.Enter(A)) {
if (A.Size.NumberOfDimensions > 2)
throw new ILArgumentSizeException("The input array must be matrix or vector");
ILArray< double> ret = svd(A);
if (tolerance < 0) {
tolerance = A.Size.Longest * max(ret).GetValue(0) * MachineParameterDouble.eps;
}
// count vector elements: ret is vector returned from svd
return find(ret > ( double)tolerance).Length;
}
}
#region HYCALPER AUTO GENERATED CODE
///
/// Rank of matrix A
///
/// Input matrix
/// [Optional]Tolerance used to decide, if a singular value is
/// treated as zero. If a value < 0 is specified the tolerance will be determined automatically (see below - default = -1.0)
/// Rank of matrix A
/// The rank is the number of singular values greater than
/// tolerance. If tolerance is smaller than zero, the following equation is used as
/// default: \\
/// tol = length(A) * norm(A) * MachineParameterDouble.epsilon \\
/// with
///
/// - length(A) - the longest dimension of A
/// - norm(A) being the largest singular value of A,
/// - MachineParameterDouble.eps - the distance between 1 and the smallest next greater value
///
///
public static ILRetArray< float> rank( ILInArray< fcomplex> A, double tolerance = -1.0 ) {
using (ILScope.Enter(A)) {
if (A.Size.NumberOfDimensions > 2)
throw new ILArgumentSizeException("The input array must be matrix or vector");
ILArray< float> ret = svd(A);
if (tolerance < 0) {
tolerance = A.Size.Longest * max(ret).GetValue(0) * MachineParameterSingle.eps;
}
// count vector elements: ret is vector returned from svd
return find(ret > ( float)tolerance).Length;
}
}
///
/// Rank of matrix A
///
/// Input matrix
/// [Optional]Tolerance used to decide, if a singular value is
/// treated as zero. If a value < 0 is specified the tolerance will be determined automatically (see below - default = -1.0)
/// Rank of matrix A
/// The rank is the number of singular values greater than
/// tolerance. If tolerance is smaller than zero, the following equation is used as
/// default: \\
/// tol = length(A) * norm(A) * MachineParameterDouble.epsilon \\
/// with
///
/// - length(A) - the longest dimension of A
/// - norm(A) being the largest singular value of A,
/// - MachineParameterDouble.eps - the distance between 1 and the smallest next greater value
///
///
public static ILRetArray< float> rank( ILInArray< float> A, double tolerance = -1.0 ) {
using (ILScope.Enter(A)) {
if (A.Size.NumberOfDimensions > 2)
throw new ILArgumentSizeException("The input array must be matrix or vector");
ILArray< float> ret = svd(A);
if (tolerance < 0) {
tolerance = A.Size.Longest * max(ret).GetValue(0) * MachineParameterSingle.eps;
}
// count vector elements: ret is vector returned from svd
return find(ret > ( float)tolerance).Length;
}
}
///
/// Rank of matrix A
///
/// Input matrix
/// [Optional]Tolerance used to decide, if a singular value is
/// treated as zero. If a value < 0 is specified the tolerance will be determined automatically (see below - default = -1.0)
/// Rank of matrix A
/// The rank is the number of singular values greater than
/// tolerance. If tolerance is smaller than zero, the following equation is used as
/// default: \\
/// tol = length(A) * norm(A) * MachineParameterDouble.epsilon \\
/// with
///
/// - length(A) - the longest dimension of A
/// - norm(A) being the largest singular value of A,
/// - MachineParameterDouble.eps - the distance between 1 and the smallest next greater value
///
///
public static ILRetArray< double> rank( ILInArray< complex> A, double tolerance = -1.0 ) {
using (ILScope.Enter(A)) {
if (A.Size.NumberOfDimensions > 2)
throw new ILArgumentSizeException("The input array must be matrix or vector");
ILArray< double> ret = svd(A);
if (tolerance < 0) {
tolerance = A.Size.Longest * max(ret).GetValue(0) * MachineParameterDouble.eps;
}
// count vector elements: ret is vector returned from svd
return find(ret > ( double)tolerance).Length;
}
}
#endregion HYCALPER AUTO GENERATED CODE
}
}