///
/// This file is part of ILNumerics Community Edition.
///
/// ILNumerics Community Edition - high performance computing for applications.
/// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
///
/// ILNumerics Community Edition is free software: you can redistribute it and/or modify
/// it under the terms of the GNU General Public License version 3 as published by
/// the Free Software Foundation.
///
/// ILNumerics Community Edition is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with ILNumerics Community Edition. See the file License.txt in the root
/// of your distribution package. If not, see .
///
/// In addition this software uses the following components and/or licenses:
///
/// =================================================================================
/// The Open Toolkit Library License
///
/// Copyright (c) 2006 - 2009 the Open Toolkit library.
///
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights to
/// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
/// the Software, and to permit persons to whom the Software is furnished to do
/// so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in all
/// copies or substantial portions of the Software.
///
/// =================================================================================
///
using System;
using System.Collections.Generic;
using System.Text;
using ILNumerics.Storage;
using ILNumerics.Misc;
using ILNumerics.Exceptions;
using ILNumerics;
namespace ILNumerics {
public partial class ILMath {
///
/// Pseudo - inverse of input argument M
///
/// Input matrix M
/// Pseudo inverse of input matrix M
/// The function returns the pseudo inverse (Moore-Penrose pseudoinverse)
/// of input matrix M. The return value will be of the same size as
/// the transposed of M. it will satisfy the following conditions:
///
/// - M * pinv(M) * M = M
/// - pinv(M) * M * pinv(M) = pinv(M)
/// - pinv(M) * M is hermitian
/// - M * pinv(M) is hermitian
///
/// pinv uses Lapack's function svd internally. Any singular values less than
/// the default tolerance will be set to zero. As tolerance the following equation is used: \\
/// tol = length(M) * norm(M) * Double.epsilon \\
/// with
///
/// - length(M) - the longest dimension of M
/// - norm(M) being the largest singular value of M,
/// - Double.epsilon - the smallest number greater than zero
///
/// You may use a overloaded function to define an alternative tolerance.
///
///
public static ILRetArray< double > pinv(ILInArray< double > M) {
return pinv(M, -1);
}
///
/// Pseudo inverse of input matrix M
///
/// Input matrix M
/// Tolerance, see remarks (default = -1; use default tolerance)
/// Pseudo inverse of M
/// The function returns the pseudo inverse (Moore-Penrose pseudoinverse)
/// of input matrix M. The return value will be of the same size as
/// the transposed of M. it will satisfy the following conditions:
///
/// - M * pinv(M) * M = M
/// - pinv(M) * M * pinv(M) = pinv(M)
/// - pinv(M) * M is hermitian
/// - M * pinv(M) is hermitian
///
/// pinv uses LAPACK's function svd internally. Any singular values less than
/// tolerance will be set to zero. If tolerance is less than zero, the following equation
/// is used as default: \\
/// tol = length(M) * norm(M) * Double.epsilon \\
/// with
///
/// - length(M) - the longest dimension of M
/// - norm(M) being the largest singular value of M,
/// - Double.epsilon - the smallest constructable double precision number greater than zero
///
///
public static ILRetArray< double > pinv(ILInArray< double > M, double tolerance) {
using (ILScope.Enter(M)) {
// let svd check the dimensions!
//if (M.Dimensions.NumberOfDimensions > 2)
// throw new ILDimensionMismatchException("pinv: ...");
// in order to use the cheap packed version of svd, the matrix must be m x n with m > n!
if (M.Size[0] < M.Size[1]) {
return pinv(M.T, tolerance).T;
}
if (M.IsScalar)
return 1.0 / M;
ILArray< double> U = empty< double>(ILSize.Empty00);
ILArray< double> V = empty< double>(ILSize.Empty00);
ILArray< double> S = svd(M, U, V, true, false);
int m = M.Size[0];
int n = M.Size[1];
ILArray< double> s;
switch (m) {
case 0:
s = zeros< double>(ILSize.Scalar1_1);
break;
case 1:
s = S[0];
break;
default:
s = diag< double>(S);
break;
}
if (tolerance < 0) {
tolerance = ( double)(M.Size.Longest * max(s).GetValue(0) * MachineParameterDouble.eps);
}
// sum vector elements: s is dense vector returned from svd
int count = (int)sum(s > ( double)tolerance);
ILArray< double> Ret = empty< double>(ILSize.Empty00);
if (count == 0)
S.a = zeros< double>(new ILSize(n, m));
else {
ILArray< double> OneVec = array< double>( 1.0, count, 1);
S.a = diag(divide(OneVec, s[r(0,count - 1)]));
U.a = U[full,r(0,count-1)].T;
Ret.a = multiply(multiply(V[full,r(0,count - 1)], S), U);
}
return Ret;
}
}
#region HYCALPER AUTO GENERATED CODE
///
/// Pseudo - inverse of input argument M
///
/// Input matrix M
/// Pseudo inverse of input matrix M
/// The function returns the pseudo inverse (Moore-Penrose pseudoinverse)
/// of input matrix M. The return value will be of the same size as
/// the transposed of M. it will satisfy the following conditions:
///
/// - M * pinv(M) * M = M
/// - pinv(M) * M * pinv(M) = pinv(M)
/// - pinv(M) * M is hermitian
/// - M * pinv(M) is hermitian
///
/// pinv uses Lapack's function svd internally. Any singular values less than
/// the default tolerance will be set to zero. As tolerance the following equation is used: \\
/// tol = length(M) * norm(M) * Double.epsilon \\
/// with
///
/// - length(M) - the longest dimension of M
/// - norm(M) being the largest singular value of M,
/// - Double.epsilon - the smallest number greater than zero
///
/// You may use a overloaded function to define an alternative tolerance.
///
///
public static ILRetArray< float > pinv(ILInArray< float > M) {
return pinv(M, -1);
}
///
/// Pseudo inverse of input matrix M
///
/// Input matrix M
/// Tolerance, see remarks (default = -1; use default tolerance)
/// Pseudo inverse of M
/// The function returns the pseudo inverse (Moore-Penrose pseudoinverse)
/// of input matrix M. The return value will be of the same size as
/// the transposed of M. it will satisfy the following conditions:
///
/// - M * pinv(M) * M = M
/// - pinv(M) * M * pinv(M) = pinv(M)
/// - pinv(M) * M is hermitian
/// - M * pinv(M) is hermitian
///
/// pinv uses LAPACK's function svd internally. Any singular values less than
/// tolerance will be set to zero. If tolerance is less than zero, the following equation
/// is used as default: \\
/// tol = length(M) * norm(M) * Double.epsilon \\
/// with
///
/// - length(M) - the longest dimension of M
/// - norm(M) being the largest singular value of M,
/// - Double.epsilon - the smallest constructable double precision number greater than zero
///
///
public static ILRetArray< float > pinv(ILInArray< float > M, float tolerance) {
using (ILScope.Enter(M)) {
// let svd check the dimensions!
//if (M.Dimensions.NumberOfDimensions > 2)
// throw new ILDimensionMismatchException("pinv: ...");
// in order to use the cheap packed version of svd, the matrix must be m x n with m > n!
if (M.Size[0] < M.Size[1]) {
return pinv(M.T, tolerance).T;
}
if (M.IsScalar)
return 1 / M;
ILArray< float> U = empty< float>(ILSize.Empty00);
ILArray< float> V = empty< float>(ILSize.Empty00);
ILArray< float> S = svd(M, U, V, true, false);
int m = M.Size[0];
int n = M.Size[1];
ILArray< float> s;
switch (m) {
case 0:
s = zeros< float>(ILSize.Scalar1_1);
break;
case 1:
s = S[0];
break;
default:
s = diag< float>(S);
break;
}
if (tolerance < 0) {
tolerance = ( float)(M.Size.Longest * max(s).GetValue(0) * ILMath.MachineParameterSingle.eps);
}
// sum vector elements: s is dense vector returned from svd
int count = (int)sum(s > ( float)tolerance);
ILArray< float> Ret = empty< float>(ILSize.Empty00);
if (count == 0)
S.a = zeros< float>(new ILSize(n, m));
else {
ILArray< float> OneVec = array< float>( 1.0f, count, 1);
S.a = diag(divide(OneVec, s[r(0,count - 1)]));
U = U[":;0:" + (count - 1)].T;
Ret = multiply(multiply(V[":;0:" + (count - 1)], S), U);
}
return Ret;
}
}
///
/// Pseudo - inverse of input argument M
///
/// Input matrix M
/// Pseudo inverse of input matrix M
/// The function returns the pseudo inverse (Moore-Penrose pseudoinverse)
/// of input matrix M. The return value will be of the same size as
/// the transposed of M. it will satisfy the following conditions:
///
/// - M * pinv(M) * M = M
/// - pinv(M) * M * pinv(M) = pinv(M)
/// - pinv(M) * M is hermitian
/// - M * pinv(M) is hermitian
///
/// pinv uses Lapack's function svd internally. Any singular values less than
/// the default tolerance will be set to zero. As tolerance the following equation is used: \\
/// tol = length(M) * norm(M) * Double.epsilon \\
/// with
///
/// - length(M) - the longest dimension of M
/// - norm(M) being the largest singular value of M,
/// - Double.epsilon - the smallest number greater than zero
///
/// You may use a overloaded function to define an alternative tolerance.
///
///
public static ILRetArray< fcomplex > pinv(ILInArray< fcomplex > M) {
return pinv(M, -1);
}
///
/// Pseudo inverse of input matrix M
///
/// Input matrix M
/// Tolerance, see remarks (default = -1; use default tolerance)
/// Pseudo inverse of M
/// The function returns the pseudo inverse (Moore-Penrose pseudoinverse)
/// of input matrix M. The return value will be of the same size as
/// the transposed of M. it will satisfy the following conditions:
///
/// - M * pinv(M) * M = M
/// - pinv(M) * M * pinv(M) = pinv(M)
/// - pinv(M) * M is hermitian
/// - M * pinv(M) is hermitian
///
/// pinv uses LAPACK's function svd internally. Any singular values less than
/// tolerance will be set to zero. If tolerance is less than zero, the following equation
/// is used as default: \\
/// tol = length(M) * norm(M) * Double.epsilon \\
/// with
///
/// - length(M) - the longest dimension of M
/// - norm(M) being the largest singular value of M,
/// - Double.epsilon - the smallest constructable double precision number greater than zero
///
///
public static ILRetArray< fcomplex > pinv(ILInArray< fcomplex > M, fcomplex tolerance) {
using (ILScope.Enter(M)) {
// let svd check the dimensions!
//if (M.Dimensions.NumberOfDimensions > 2)
// throw new ILDimensionMismatchException("pinv: ...");
// in order to use the cheap packed version of svd, the matrix must be m x n with m > n!
if (M.Size[0] < M.Size[1]) {
return conj(pinv(conj(M.T), tolerance)).T;
}
if (M.IsScalar)
return new fcomplex(1f,0f) / M;
ILArray< fcomplex> U = empty< fcomplex>(ILSize.Empty00);
ILArray< fcomplex> V = empty< fcomplex>(ILSize.Empty00);
ILArray< float> S = svd(M, U, V, true, false);
int m = M.Size[0];
int n = M.Size[1];
ILArray< float> s;
switch (m) {
case 0:
s = zeros< float>(ILSize.Scalar1_1);
break;
case 1:
s = S[0];
break;
default:
s = diag< float>(S);
break;
}
if (tolerance < 0) {
tolerance = ( fcomplex)(M.Size.Longest * max(s).GetValue(0) * ILMath.MachineParameterSingle.eps);
}
// sum vector elements: s is dense vector returned from svd
int count = (int)sum(s > ( float)tolerance);
ILArray< fcomplex> Ret = empty< fcomplex>(ILSize.Empty00);
if (count == 0)
S.a = zeros< float>(new ILSize(n, m));
else {
ILArray< float> OneVec = array< float>( 1.0f, count, 1);
S.a = diag(divide(OneVec, s[r(0,count - 1)]));
U = conj(U[":;0:" + (count - 1)].T);
Ret = multiply(multiply(V[":;0:" + (count - 1)], real2fcomplex(S)), U);
}
return Ret;
}
}
///
/// Pseudo - inverse of input argument M
///
/// Input matrix M
/// Pseudo inverse of input matrix M
/// The function returns the pseudo inverse (Moore-Penrose pseudoinverse)
/// of input matrix M. The return value will be of the same size as
/// the transposed of M. it will satisfy the following conditions:
///
/// - M * pinv(M) * M = M
/// - pinv(M) * M * pinv(M) = pinv(M)
/// - pinv(M) * M is hermitian
/// - M * pinv(M) is hermitian
///
/// pinv uses Lapack's function svd internally. Any singular values less than
/// the default tolerance will be set to zero. As tolerance the following equation is used: \\
/// tol = length(M) * norm(M) * Double.epsilon \\
/// with
///
/// - length(M) - the longest dimension of M
/// - norm(M) being the largest singular value of M,
/// - Double.epsilon - the smallest number greater than zero
///
/// You may use a overloaded function to define an alternative tolerance.
///
///
public static ILRetArray< complex > pinv(ILInArray< complex > M) {
return pinv(M, -1);
}
///
/// Pseudo inverse of input matrix M
///
/// Input matrix M
/// Tolerance, see remarks (default = -1; use default tolerance)
/// Pseudo inverse of M
/// The function returns the pseudo inverse (Moore-Penrose pseudoinverse)
/// of input matrix M. The return value will be of the same size as
/// the transposed of M. it will satisfy the following conditions:
///
/// - M * pinv(M) * M = M
/// - pinv(M) * M * pinv(M) = pinv(M)
/// - pinv(M) * M is hermitian
/// - M * pinv(M) is hermitian
///
/// pinv uses LAPACK's function svd internally. Any singular values less than
/// tolerance will be set to zero. If tolerance is less than zero, the following equation
/// is used as default: \\
/// tol = length(M) * norm(M) * Double.epsilon \\
/// with
///
/// - length(M) - the longest dimension of M
/// - norm(M) being the largest singular value of M,
/// - Double.epsilon - the smallest constructable double precision number greater than zero
///
///
public static ILRetArray< complex > pinv(ILInArray< complex > M, complex tolerance) {
using (ILScope.Enter(M)) {
// let svd check the dimensions!
//if (M.Dimensions.NumberOfDimensions > 2)
// throw new ILDimensionMismatchException("pinv: ...");
// in order to use the cheap packed version of svd, the matrix must be m x n with m > n!
if (M.Size[0] < M.Size[1]) {
return conj(pinv(conj(M.T), tolerance)).T;
}
if (M.IsScalar)
return new complex(1,0) / M;
ILArray< complex> U = empty< complex>(ILSize.Empty00);
ILArray< complex> V = empty< complex>(ILSize.Empty00);
ILArray< double> S = svd(M, U, V, true, false);
int m = M.Size[0];
int n = M.Size[1];
ILArray< double> s;
switch (m) {
case 0:
s = zeros< double>(ILSize.Scalar1_1);
break;
case 1:
s = S[0];
break;
default:
s = diag< double>(S);
break;
}
if (tolerance < 0) {
tolerance = ( complex)(M.Size.Longest * max(s).GetValue(0) * ILMath.MachineParameterDouble.eps);
}
// sum vector elements: s is dense vector returned from svd
int count = (int)sum(s > ( double)tolerance);
ILArray< complex> Ret = empty< complex>(ILSize.Empty00);
if (count == 0)
S.a = zeros< double>(new ILSize(n, m));
else {
ILArray< double> OneVec = array< double>( 1.0, count, 1);
S.a = diag(divide(OneVec, s[r(0,count - 1)]));
U = conj(U[":;0:" + (count - 1)].T);
Ret = multiply(multiply(V[":;0:" + (count - 1)], real2complex(S)), U);
}
return Ret;
}
}
#endregion HYCALPER AUTO GENERATED CODE
}
}