///
/// This file is part of ILNumerics Community Edition.
///
/// ILNumerics Community Edition - high performance computing for applications.
/// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
///
/// ILNumerics Community Edition is free software: you can redistribute it and/or modify
/// it under the terms of the GNU General Public License version 3 as published by
/// the Free Software Foundation.
///
/// ILNumerics Community Edition is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with ILNumerics Community Edition. See the file License.txt in the root
/// of your distribution package. If not, see .
///
/// In addition this software uses the following components and/or licenses:
///
/// =================================================================================
/// The Open Toolkit Library License
///
/// Copyright (c) 2006 - 2009 the Open Toolkit library.
///
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights to
/// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
/// the Software, and to permit persons to whom the Software is furnished to do
/// so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in all
/// copies or substantial portions of the Software.
///
/// =================================================================================
///
using System;
using System.Collections.Generic;
using System.Text;
using System.Runtime.InteropServices;
using ILNumerics.Storage;
using ILNumerics.Misc;
using ILNumerics.Native;
using ILNumerics.Exceptions;
namespace ILNumerics {
public partial class ILMath {
#region HYCALPER AUTO GENERATED CODE
/// Elementwise logical 'not equal' operator
/// Input array A
/// Input array B
/// Logical array having '1' for elements in A not equal to corresponding elements in B, '0' else
/// On empty input an empty array will be returned.
/// A and/or B may be scalar. The scalar value will be applied on all elements of the other array.
/// If neither A nor B is scalar or empty, the dimensions of both arrays must match.
public unsafe static ILRetLogical neq(ILInArray A, ILInArray B) {
using (ILScope.Enter(A, B)) {
int outLen;
BinOpItMode mode;
byte[] retArr;
Int64[] arrA = A.GetArrayForRead();
Int64[] arrB = B.GetArrayForRead();
ILSize outDims;
if (A.IsScalar) {
if (B.IsScalar) {
return new ILRetLogical(new byte[1] { (A.GetValue(0) != B.GetValue(0)) ? (byte)1 : (byte)0 });
} else if (B.IsEmpty) {
return new ILRetLogical(B.Size);
} else {
outLen = B.S.NumberOfElements;
retArr = ILMemoryPool.Pool.New(outLen);
mode = BinOpItMode.SAN;
}
outDims = B.Size;
} else {
outDims = A.Size;
if (B.IsScalar) {
if (A.IsEmpty) {
return new ILRetLogical(A.Size);
}
outLen = A.S.NumberOfElements;
retArr = ILMemoryPool.Pool.New(outLen);
mode = BinOpItMode.ASN;
} else {
// array + array
if (!A.Size.IsSameSize(B.Size)) {
return neqEx(A,B);
}
outLen = A.S.NumberOfElements;
retArr = ILMemoryPool.Pool.New(outLen);
mode = BinOpItMode.AAN;
}
}
int workerCount = 1;
Action worker = data => {
Tuple range
= (Tuple)data;
byte* cLast, cp = (byte*)range.Item5 + range.Item1;
Int64 scalar;
cLast = cp + range.Item2;
#region loops
switch (mode) {
case BinOpItMode.AAN:
Int64* ap = ((Int64*)range.Item3 + range.Item1);
Int64* bp = ((Int64*)range.Item4 + range.Item1);
while (cp < cLast) {
*cp = (*ap != *bp) ? (byte)1 : (byte)0;
cp++;
ap++;
bp++;
}
break;
case BinOpItMode.ASN:
ap = ((Int64*)range.Item3 + range.Item1);
scalar = *((Int64*)range.Item4);
while (cp < cLast) {
*cp = (*ap != scalar) ? (byte)1 : (byte)0;
cp++;
ap++;
}
break;
case BinOpItMode.SAN:
scalar = *((Int64*)range.Item3);
bp = ((Int64*)range.Item4 + range.Item1);
while (cp < cLast) {
*cp = (scalar != *bp) ? (byte)1 : (byte)0;
cp++;
bp++;
}
break;
default:
break;
}
#endregion
System.Threading.Interlocked.Decrement(ref workerCount);
};
#region do the work
fixed (Int64* arrAP = arrA)
fixed (Int64* arrBP = arrB)
fixed (byte* retArrP = retArr) {
int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength;
if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) {
if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
workItemLength = outLen / workItemCount;
} else {
workItemLength = outLen / 2;
workItemCount = 2;
}
} else {
workItemLength = outLen;
workItemCount = 1;
}
for (; i < workItemCount - 1; i++) {
Tuple range
= new Tuple
(i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode);
System.Threading.Interlocked.Increment(ref workerCount);
ILThreadPool.QueueUserWorkItem(i, worker, range);
}
// the last (or may the only) chunk is done right here
worker(new Tuple
(i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode));
ILThreadPool.Wait4Workers(ref workerCount);
}
#endregion
return new ILRetLogical(retArr, outDims);
}
}
private static unsafe ILRetLogical neqEx(ILInArray A, ILInArray B) {
using (ILScope.Enter(A, B)) {
#region parameter checking
if (isnull(A) || isnull(B))
return new ILRetLogical(ILSize.Empty00);
if (A.IsEmpty) {
return new ILRetLogical(B.S);
} else if (B.IsEmpty) {
return new ILRetLogical(A.S);
}
//if (A.IsScalar || B.IsScalar || A.D.IsSameSize(B.D))
// return add(A,B);
int dim = -1;
for (int l = 0; l < Math.Max(A.S.NumberOfDimensions, B.S.NumberOfDimensions); l++) {
if (A.S[l] != B.S[l]) {
if (dim >= 0 || (A.S[l] != 1 && B.S[l] != 1)) {
throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B");
}
dim = l;
}
}
if (dim > 1)
throw new ILArgumentException("singleton dimension expansion currently is only supported for colum- and row vectors");
#endregion
#region parameter preparation
byte[] retArr;
Int64[] arrA = A.GetArrayForRead();
Int64[] arrB = B.GetArrayForRead();
ILSize outDims;
BinOptItExMode mode;
int arrInc = 0;
int arrStepInc = 0;
int dimLen = 0;
if (A.IsVector) {
outDims = B.S;
retArr = ILMemoryPool.Pool.New(outDims.NumberOfElements);
mode = BinOptItExMode.VAN;
dimLen = A.Length;
} else if (B.IsVector) {
outDims = A.S;
retArr = ILMemoryPool.Pool.New(outDims.NumberOfElements);
mode = BinOptItExMode.AVN;
dimLen = B.Length;
} else {
throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B");
}
arrInc = (dim == 0) ? outDims.SequentialIndexDistance(1) : outDims.SequentialIndexDistance(0);
arrStepInc = outDims.SequentialIndexDistance(dim);
#endregion
#region worker loops definition
ILLogicalStorage retStorage = new ILLogicalStorage(retArr, outDims);
int workerCount = 1;
Action worker = data => {
// expects: iStart, iLen, ap, bp, cp
Tuple range =
(Tuple)data;
Int64* ap;
Int64* bp;
byte* cp;
switch (mode) {
case BinOptItExMode.VAN:
for (int s = 0; s < range.Item2; s++) {
ap = (Int64*)range.Item3;
bp = (Int64*)range.Item4 + range.Item1 + s * arrStepInc; ;
cp = (byte*)range.Item5 + range.Item1 + s * arrStepInc;
for (int l = 0; l < dimLen; l++) {
*cp = (*ap != *bp) ? (byte)1 : (byte)0;
ap++;
bp += arrInc;
cp += arrInc;
}
}
break;
case BinOptItExMode.AVN:
for (int s = 0; s < range.Item2; s++) {
ap = (Int64*)range.Item3 + range.Item1 + s * arrStepInc;
bp = (Int64*)range.Item4;
cp = (byte*)range.Item5 + range.Item1 + s * arrStepInc;
for (int l = 0; l < dimLen; l++) {
*cp = (*ap != *bp) ? (byte)1 : (byte)0;
ap += arrInc;
bp++;
cp += arrInc;
}
}
break;
}
System.Threading.Interlocked.Decrement(ref workerCount);
};
#endregion
#region work distribution
int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength;
int outLen = outDims.NumberOfElements;
if (Settings.s_maxNumberThreads > 1 && outLen / 2 >= Settings.s_minParallelElement1Count) {
if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
workItemLength = outLen / dimLen / workItemCount;
//workItemLength = (int)((double)outLen / workItemCount * 1.05);
} else {
workItemLength = outLen / dimLen / 2;
workItemCount = 2;
}
} else {
workItemLength = outLen / dimLen;
workItemCount = 1;
}
fixed ( Int64* arrAP = arrA)
fixed ( Int64* arrBP = arrB)
fixed (byte* retArrP = retArr) {
for (; i < workItemCount - 1; i++) {
Tuple range
= new Tuple
(i * workItemLength * arrStepInc, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP);
System.Threading.Interlocked.Increment(ref workerCount);
ILThreadPool.QueueUserWorkItem(i, worker, range);
}
// the last (or may the only) chunk is done right here
//System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
worker(new Tuple
(i * workItemLength * arrStepInc, (outLen / dimLen) - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP));
ILThreadPool.Wait4Workers(ref workerCount);
}
#endregion
return new ILRetLogical(retStorage);
}
}
/// Elementwise logical 'not equal' operator
/// Input array A
/// Input array B
/// Logical array having '1' for elements in A not equal to corresponding elements in B, '0' else
/// On empty input an empty array will be returned.
/// A and/or B may be scalar. The scalar value will be applied on all elements of the other array.
/// If neither A nor B is scalar or empty, the dimensions of both arrays must match.
public unsafe static ILRetLogical neq(ILInArray A, ILInArray B) {
using (ILScope.Enter(A, B)) {
int outLen;
BinOpItMode mode;
byte[] retArr;
Int32[] arrA = A.GetArrayForRead();
Int32[] arrB = B.GetArrayForRead();
ILSize outDims;
if (A.IsScalar) {
if (B.IsScalar) {
return new ILRetLogical(new byte[1] { (A.GetValue(0) != B.GetValue(0)) ? (byte)1 : (byte)0 });
} else if (B.IsEmpty) {
return new ILRetLogical(B.Size);
} else {
outLen = B.S.NumberOfElements;
retArr = ILMemoryPool.Pool.New(outLen);
mode = BinOpItMode.SAN;
}
outDims = B.Size;
} else {
outDims = A.Size;
if (B.IsScalar) {
if (A.IsEmpty) {
return new ILRetLogical(A.Size);
}
outLen = A.S.NumberOfElements;
retArr = ILMemoryPool.Pool.New(outLen);
mode = BinOpItMode.ASN;
} else {
// array + array
if (!A.Size.IsSameSize(B.Size)) {
return neqEx(A,B);
}
outLen = A.S.NumberOfElements;
retArr = ILMemoryPool.Pool.New(outLen);
mode = BinOpItMode.AAN;
}
}
int workerCount = 1;
Action worker = data => {
Tuple range
= (Tuple)data;
byte* cLast, cp = (byte*)range.Item5 + range.Item1;
Int32 scalar;
cLast = cp + range.Item2;
#region loops
switch (mode) {
case BinOpItMode.AAN:
Int32* ap = ((Int32*)range.Item3 + range.Item1);
Int32* bp = ((Int32*)range.Item4 + range.Item1);
while (cp < cLast) {
*cp = (*ap != *bp) ? (byte)1 : (byte)0;
cp++;
ap++;
bp++;
}
break;
case BinOpItMode.ASN:
ap = ((Int32*)range.Item3 + range.Item1);
scalar = *((Int32*)range.Item4);
while (cp < cLast) {
*cp = (*ap != scalar) ? (byte)1 : (byte)0;
cp++;
ap++;
}
break;
case BinOpItMode.SAN:
scalar = *((Int32*)range.Item3);
bp = ((Int32*)range.Item4 + range.Item1);
while (cp < cLast) {
*cp = (scalar != *bp) ? (byte)1 : (byte)0;
cp++;
bp++;
}
break;
default:
break;
}
#endregion
System.Threading.Interlocked.Decrement(ref workerCount);
};
#region do the work
fixed (Int32* arrAP = arrA)
fixed (Int32* arrBP = arrB)
fixed (byte* retArrP = retArr) {
int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength;
if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) {
if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
workItemLength = outLen / workItemCount;
} else {
workItemLength = outLen / 2;
workItemCount = 2;
}
} else {
workItemLength = outLen;
workItemCount = 1;
}
for (; i < workItemCount - 1; i++) {
Tuple range
= new Tuple
(i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode);
System.Threading.Interlocked.Increment(ref workerCount);
ILThreadPool.QueueUserWorkItem(i, worker, range);
}
// the last (or may the only) chunk is done right here
worker(new Tuple
(i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode));
ILThreadPool.Wait4Workers(ref workerCount);
}
#endregion
return new ILRetLogical(retArr, outDims);
}
}
private static unsafe ILRetLogical neqEx(ILInArray A, ILInArray B) {
using (ILScope.Enter(A, B)) {
#region parameter checking
if (isnull(A) || isnull(B))
return new ILRetLogical(ILSize.Empty00);
if (A.IsEmpty) {
return new ILRetLogical(B.S);
} else if (B.IsEmpty) {
return new ILRetLogical(A.S);
}
//if (A.IsScalar || B.IsScalar || A.D.IsSameSize(B.D))
// return add(A,B);
int dim = -1;
for (int l = 0; l < Math.Max(A.S.NumberOfDimensions, B.S.NumberOfDimensions); l++) {
if (A.S[l] != B.S[l]) {
if (dim >= 0 || (A.S[l] != 1 && B.S[l] != 1)) {
throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B");
}
dim = l;
}
}
if (dim > 1)
throw new ILArgumentException("singleton dimension expansion currently is only supported for colum- and row vectors");
#endregion
#region parameter preparation
byte[] retArr;
Int32[] arrA = A.GetArrayForRead();
Int32[] arrB = B.GetArrayForRead();
ILSize outDims;
BinOptItExMode mode;
int arrInc = 0;
int arrStepInc = 0;
int dimLen = 0;
if (A.IsVector) {
outDims = B.S;
retArr = ILMemoryPool.Pool.New(outDims.NumberOfElements);
mode = BinOptItExMode.VAN;
dimLen = A.Length;
} else if (B.IsVector) {
outDims = A.S;
retArr = ILMemoryPool.Pool.New(outDims.NumberOfElements);
mode = BinOptItExMode.AVN;
dimLen = B.Length;
} else {
throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B");
}
arrInc = (dim == 0) ? outDims.SequentialIndexDistance(1) : outDims.SequentialIndexDistance(0);
arrStepInc = outDims.SequentialIndexDistance(dim);
#endregion
#region worker loops definition
ILLogicalStorage retStorage = new ILLogicalStorage(retArr, outDims);
int workerCount = 1;
Action worker = data => {
// expects: iStart, iLen, ap, bp, cp
Tuple range =
(Tuple)data;
Int32* ap;
Int32* bp;
byte* cp;
switch (mode) {
case BinOptItExMode.VAN:
for (int s = 0; s < range.Item2; s++) {
ap = (Int32*)range.Item3;
bp = (Int32*)range.Item4 + range.Item1 + s * arrStepInc; ;
cp = (byte*)range.Item5 + range.Item1 + s * arrStepInc;
for (int l = 0; l < dimLen; l++) {
*cp = (*ap != *bp) ? (byte)1 : (byte)0;
ap++;
bp += arrInc;
cp += arrInc;
}
}
break;
case BinOptItExMode.AVN:
for (int s = 0; s < range.Item2; s++) {
ap = (Int32*)range.Item3 + range.Item1 + s * arrStepInc;
bp = (Int32*)range.Item4;
cp = (byte*)range.Item5 + range.Item1 + s * arrStepInc;
for (int l = 0; l < dimLen; l++) {
*cp = (*ap != *bp) ? (byte)1 : (byte)0;
ap += arrInc;
bp++;
cp += arrInc;
}
}
break;
}
System.Threading.Interlocked.Decrement(ref workerCount);
};
#endregion
#region work distribution
int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength;
int outLen = outDims.NumberOfElements;
if (Settings.s_maxNumberThreads > 1 && outLen / 2 >= Settings.s_minParallelElement1Count) {
if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
workItemLength = outLen / dimLen / workItemCount;
//workItemLength = (int)((double)outLen / workItemCount * 1.05);
} else {
workItemLength = outLen / dimLen / 2;
workItemCount = 2;
}
} else {
workItemLength = outLen / dimLen;
workItemCount = 1;
}
fixed ( Int32* arrAP = arrA)
fixed ( Int32* arrBP = arrB)
fixed (byte* retArrP = retArr) {
for (; i < workItemCount - 1; i++) {
Tuple range
= new Tuple
(i * workItemLength * arrStepInc, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP);
System.Threading.Interlocked.Increment(ref workerCount);
ILThreadPool.QueueUserWorkItem(i, worker, range);
}
// the last (or may the only) chunk is done right here
//System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
worker(new Tuple
(i * workItemLength * arrStepInc, (outLen / dimLen) - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP));
ILThreadPool.Wait4Workers(ref workerCount);
}
#endregion
return new ILRetLogical(retStorage);
}
}
/// Elementwise logical 'not equal' operator
/// Input array A
/// Input array B
/// Logical array having '1' for elements in A not equal to corresponding elements in B, '0' else
/// On empty input an empty array will be returned.
/// A and/or B may be scalar. The scalar value will be applied on all elements of the other array.
/// If neither A nor B is scalar or empty, the dimensions of both arrays must match.
public unsafe static ILRetLogical neq(ILInArray A, ILInArray B) {
using (ILScope.Enter(A, B)) {
int outLen;
BinOpItMode mode;
byte[] retArr;
float[] arrA = A.GetArrayForRead();
float[] arrB = B.GetArrayForRead();
ILSize outDims;
if (A.IsScalar) {
if (B.IsScalar) {
return new ILRetLogical(new byte[1] { (A.GetValue(0) != B.GetValue(0)) ? (byte)1 : (byte)0 });
} else if (B.IsEmpty) {
return new ILRetLogical(B.Size);
} else {
outLen = B.S.NumberOfElements;
retArr = ILMemoryPool.Pool.New(outLen);
mode = BinOpItMode.SAN;
}
outDims = B.Size;
} else {
outDims = A.Size;
if (B.IsScalar) {
if (A.IsEmpty) {
return new ILRetLogical(A.Size);
}
outLen = A.S.NumberOfElements;
retArr = ILMemoryPool.Pool.New(outLen);
mode = BinOpItMode.ASN;
} else {
// array + array
if (!A.Size.IsSameSize(B.Size)) {
return neqEx(A,B);
}
outLen = A.S.NumberOfElements;
retArr = ILMemoryPool.Pool.New(outLen);
mode = BinOpItMode.AAN;
}
}
int workerCount = 1;
Action worker = data => {
Tuple range
= (Tuple)data;
byte* cLast, cp = (byte*)range.Item5 + range.Item1;
float scalar;
cLast = cp + range.Item2;
#region loops
switch (mode) {
case BinOpItMode.AAN:
float* ap = ((float*)range.Item3 + range.Item1);
float* bp = ((float*)range.Item4 + range.Item1);
while (cp < cLast) {
*cp = (*ap != *bp) ? (byte)1 : (byte)0;
cp++;
ap++;
bp++;
}
break;
case BinOpItMode.ASN:
ap = ((float*)range.Item3 + range.Item1);
scalar = *((float*)range.Item4);
while (cp < cLast) {
*cp = (*ap != scalar) ? (byte)1 : (byte)0;
cp++;
ap++;
}
break;
case BinOpItMode.SAN:
scalar = *((float*)range.Item3);
bp = ((float*)range.Item4 + range.Item1);
while (cp < cLast) {
*cp = (scalar != *bp) ? (byte)1 : (byte)0;
cp++;
bp++;
}
break;
default:
break;
}
#endregion
System.Threading.Interlocked.Decrement(ref workerCount);
};
#region do the work
fixed (float* arrAP = arrA)
fixed (float* arrBP = arrB)
fixed (byte* retArrP = retArr) {
int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength;
if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) {
if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
workItemLength = outLen / workItemCount;
} else {
workItemLength = outLen / 2;
workItemCount = 2;
}
} else {
workItemLength = outLen;
workItemCount = 1;
}
for (; i < workItemCount - 1; i++) {
Tuple range
= new Tuple
(i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode);
System.Threading.Interlocked.Increment(ref workerCount);
ILThreadPool.QueueUserWorkItem(i, worker, range);
}
// the last (or may the only) chunk is done right here
worker(new Tuple
(i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode));
ILThreadPool.Wait4Workers(ref workerCount);
}
#endregion
return new ILRetLogical(retArr, outDims);
}
}
private static unsafe ILRetLogical neqEx(ILInArray A, ILInArray B) {
using (ILScope.Enter(A, B)) {
#region parameter checking
if (isnull(A) || isnull(B))
return new ILRetLogical(ILSize.Empty00);
if (A.IsEmpty) {
return new ILRetLogical(B.S);
} else if (B.IsEmpty) {
return new ILRetLogical(A.S);
}
//if (A.IsScalar || B.IsScalar || A.D.IsSameSize(B.D))
// return add(A,B);
int dim = -1;
for (int l = 0; l < Math.Max(A.S.NumberOfDimensions, B.S.NumberOfDimensions); l++) {
if (A.S[l] != B.S[l]) {
if (dim >= 0 || (A.S[l] != 1 && B.S[l] != 1)) {
throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B");
}
dim = l;
}
}
if (dim > 1)
throw new ILArgumentException("singleton dimension expansion currently is only supported for colum- and row vectors");
#endregion
#region parameter preparation
byte[] retArr;
float[] arrA = A.GetArrayForRead();
float[] arrB = B.GetArrayForRead();
ILSize outDims;
BinOptItExMode mode;
int arrInc = 0;
int arrStepInc = 0;
int dimLen = 0;
if (A.IsVector) {
outDims = B.S;
retArr = ILMemoryPool.Pool.New(outDims.NumberOfElements);
mode = BinOptItExMode.VAN;
dimLen = A.Length;
} else if (B.IsVector) {
outDims = A.S;
retArr = ILMemoryPool.Pool.New(outDims.NumberOfElements);
mode = BinOptItExMode.AVN;
dimLen = B.Length;
} else {
throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B");
}
arrInc = (dim == 0) ? outDims.SequentialIndexDistance(1) : outDims.SequentialIndexDistance(0);
arrStepInc = outDims.SequentialIndexDistance(dim);
#endregion
#region worker loops definition
ILLogicalStorage retStorage = new ILLogicalStorage(retArr, outDims);
int workerCount = 1;
Action worker = data => {
// expects: iStart, iLen, ap, bp, cp
Tuple range =
(Tuple)data;
float* ap;
float* bp;
byte* cp;
switch (mode) {
case BinOptItExMode.VAN:
for (int s = 0; s < range.Item2; s++) {
ap = (float*)range.Item3;
bp = (float*)range.Item4 + range.Item1 + s * arrStepInc; ;
cp = (byte*)range.Item5 + range.Item1 + s * arrStepInc;
for (int l = 0; l < dimLen; l++) {
*cp = (*ap != *bp) ? (byte)1 : (byte)0;
ap++;
bp += arrInc;
cp += arrInc;
}
}
break;
case BinOptItExMode.AVN:
for (int s = 0; s < range.Item2; s++) {
ap = (float*)range.Item3 + range.Item1 + s * arrStepInc;
bp = (float*)range.Item4;
cp = (byte*)range.Item5 + range.Item1 + s * arrStepInc;
for (int l = 0; l < dimLen; l++) {
*cp = (*ap != *bp) ? (byte)1 : (byte)0;
ap += arrInc;
bp++;
cp += arrInc;
}
}
break;
}
System.Threading.Interlocked.Decrement(ref workerCount);
};
#endregion
#region work distribution
int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength;
int outLen = outDims.NumberOfElements;
if (Settings.s_maxNumberThreads > 1 && outLen / 2 >= Settings.s_minParallelElement1Count) {
if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
workItemLength = outLen / dimLen / workItemCount;
//workItemLength = (int)((double)outLen / workItemCount * 1.05);
} else {
workItemLength = outLen / dimLen / 2;
workItemCount = 2;
}
} else {
workItemLength = outLen / dimLen;
workItemCount = 1;
}
fixed ( float* arrAP = arrA)
fixed ( float* arrBP = arrB)
fixed (byte* retArrP = retArr) {
for (; i < workItemCount - 1; i++) {
Tuple range
= new Tuple
(i * workItemLength * arrStepInc, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP);
System.Threading.Interlocked.Increment(ref workerCount);
ILThreadPool.QueueUserWorkItem(i, worker, range);
}
// the last (or may the only) chunk is done right here
//System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
worker(new Tuple
(i * workItemLength * arrStepInc, (outLen / dimLen) - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP));
ILThreadPool.Wait4Workers(ref workerCount);
}
#endregion
return new ILRetLogical(retStorage);
}
}
/// Elementwise logical 'not equal' operator
/// Input array A
/// Input array B
/// Logical array having '1' for elements in A not equal to corresponding elements in B, '0' else
/// On empty input an empty array will be returned.
/// A and/or B may be scalar. The scalar value will be applied on all elements of the other array.
/// If neither A nor B is scalar or empty, the dimensions of both arrays must match.
public unsafe static ILRetLogical neq(ILInArray A, ILInArray B) {
using (ILScope.Enter(A, B)) {
int outLen;
BinOpItMode mode;
byte[] retArr;
fcomplex[] arrA = A.GetArrayForRead();
fcomplex[] arrB = B.GetArrayForRead();
ILSize outDims;
if (A.IsScalar) {
if (B.IsScalar) {
return new ILRetLogical(new byte[1] { (A.GetValue(0) != B.GetValue(0)) ? (byte)1 : (byte)0 });
} else if (B.IsEmpty) {
return new ILRetLogical(B.Size);
} else {
outLen = B.S.NumberOfElements;
retArr = ILMemoryPool.Pool.New(outLen);
mode = BinOpItMode.SAN;
}
outDims = B.Size;
} else {
outDims = A.Size;
if (B.IsScalar) {
if (A.IsEmpty) {
return new ILRetLogical(A.Size);
}
outLen = A.S.NumberOfElements;
retArr = ILMemoryPool.Pool.New(outLen);
mode = BinOpItMode.ASN;
} else {
// array + array
if (!A.Size.IsSameSize(B.Size)) {
return neqEx(A,B);
}
outLen = A.S.NumberOfElements;
retArr = ILMemoryPool.Pool.New(outLen);
mode = BinOpItMode.AAN;
}
}
int workerCount = 1;
Action worker = data => {
Tuple range
= (Tuple)data;
byte* cLast, cp = (byte*)range.Item5 + range.Item1;
fcomplex scalar;
cLast = cp + range.Item2;
#region loops
switch (mode) {
case BinOpItMode.AAN:
fcomplex* ap = ((fcomplex*)range.Item3 + range.Item1);
fcomplex* bp = ((fcomplex*)range.Item4 + range.Item1);
while (cp < cLast) {
*cp = (*ap != *bp) ? (byte)1 : (byte)0;
cp++;
ap++;
bp++;
}
break;
case BinOpItMode.ASN:
ap = ((fcomplex*)range.Item3 + range.Item1);
scalar = *((fcomplex*)range.Item4);
while (cp < cLast) {
*cp = (*ap != scalar) ? (byte)1 : (byte)0;
cp++;
ap++;
}
break;
case BinOpItMode.SAN:
scalar = *((fcomplex*)range.Item3);
bp = ((fcomplex*)range.Item4 + range.Item1);
while (cp < cLast) {
*cp = (scalar != *bp) ? (byte)1 : (byte)0;
cp++;
bp++;
}
break;
default:
break;
}
#endregion
System.Threading.Interlocked.Decrement(ref workerCount);
};
#region do the work
fixed (fcomplex* arrAP = arrA)
fixed (fcomplex* arrBP = arrB)
fixed (byte* retArrP = retArr) {
int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength;
if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) {
if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
workItemLength = outLen / workItemCount;
} else {
workItemLength = outLen / 2;
workItemCount = 2;
}
} else {
workItemLength = outLen;
workItemCount = 1;
}
for (; i < workItemCount - 1; i++) {
Tuple range
= new Tuple
(i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode);
System.Threading.Interlocked.Increment(ref workerCount);
ILThreadPool.QueueUserWorkItem(i, worker, range);
}
// the last (or may the only) chunk is done right here
worker(new Tuple
(i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode));
ILThreadPool.Wait4Workers(ref workerCount);
}
#endregion
return new ILRetLogical(retArr, outDims);
}
}
private static unsafe ILRetLogical neqEx(ILInArray A, ILInArray B) {
using (ILScope.Enter(A, B)) {
#region parameter checking
if (isnull(A) || isnull(B))
return new ILRetLogical(ILSize.Empty00);
if (A.IsEmpty) {
return new ILRetLogical(B.S);
} else if (B.IsEmpty) {
return new ILRetLogical(A.S);
}
//if (A.IsScalar || B.IsScalar || A.D.IsSameSize(B.D))
// return add(A,B);
int dim = -1;
for (int l = 0; l < Math.Max(A.S.NumberOfDimensions, B.S.NumberOfDimensions); l++) {
if (A.S[l] != B.S[l]) {
if (dim >= 0 || (A.S[l] != 1 && B.S[l] != 1)) {
throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B");
}
dim = l;
}
}
if (dim > 1)
throw new ILArgumentException("singleton dimension expansion currently is only supported for colum- and row vectors");
#endregion
#region parameter preparation
byte[] retArr;
fcomplex[] arrA = A.GetArrayForRead();
fcomplex[] arrB = B.GetArrayForRead();
ILSize outDims;
BinOptItExMode mode;
int arrInc = 0;
int arrStepInc = 0;
int dimLen = 0;
if (A.IsVector) {
outDims = B.S;
retArr = ILMemoryPool.Pool.New(outDims.NumberOfElements);
mode = BinOptItExMode.VAN;
dimLen = A.Length;
} else if (B.IsVector) {
outDims = A.S;
retArr = ILMemoryPool.Pool.New(outDims.NumberOfElements);
mode = BinOptItExMode.AVN;
dimLen = B.Length;
} else {
throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B");
}
arrInc = (dim == 0) ? outDims.SequentialIndexDistance(1) : outDims.SequentialIndexDistance(0);
arrStepInc = outDims.SequentialIndexDistance(dim);
#endregion
#region worker loops definition
ILLogicalStorage retStorage = new ILLogicalStorage(retArr, outDims);
int workerCount = 1;
Action worker = data => {
// expects: iStart, iLen, ap, bp, cp
Tuple range =
(Tuple)data;
fcomplex* ap;
fcomplex* bp;
byte* cp;
switch (mode) {
case BinOptItExMode.VAN:
for (int s = 0; s < range.Item2; s++) {
ap = (fcomplex*)range.Item3;
bp = (fcomplex*)range.Item4 + range.Item1 + s * arrStepInc; ;
cp = (byte*)range.Item5 + range.Item1 + s * arrStepInc;
for (int l = 0; l < dimLen; l++) {
*cp = (*ap != *bp) ? (byte)1 : (byte)0;
ap++;
bp += arrInc;
cp += arrInc;
}
}
break;
case BinOptItExMode.AVN:
for (int s = 0; s < range.Item2; s++) {
ap = (fcomplex*)range.Item3 + range.Item1 + s * arrStepInc;
bp = (fcomplex*)range.Item4;
cp = (byte*)range.Item5 + range.Item1 + s * arrStepInc;
for (int l = 0; l < dimLen; l++) {
*cp = (*ap != *bp) ? (byte)1 : (byte)0;
ap += arrInc;
bp++;
cp += arrInc;
}
}
break;
}
System.Threading.Interlocked.Decrement(ref workerCount);
};
#endregion
#region work distribution
int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength;
int outLen = outDims.NumberOfElements;
if (Settings.s_maxNumberThreads > 1 && outLen / 2 >= Settings.s_minParallelElement1Count) {
if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
workItemLength = outLen / dimLen / workItemCount;
//workItemLength = (int)((double)outLen / workItemCount * 1.05);
} else {
workItemLength = outLen / dimLen / 2;
workItemCount = 2;
}
} else {
workItemLength = outLen / dimLen;
workItemCount = 1;
}
fixed ( fcomplex* arrAP = arrA)
fixed ( fcomplex* arrBP = arrB)
fixed (byte* retArrP = retArr) {
for (; i < workItemCount - 1; i++) {
Tuple range
= new Tuple
(i * workItemLength * arrStepInc, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP);
System.Threading.Interlocked.Increment(ref workerCount);
ILThreadPool.QueueUserWorkItem(i, worker, range);
}
// the last (or may the only) chunk is done right here
//System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
worker(new Tuple
(i * workItemLength * arrStepInc, (outLen / dimLen) - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP));
ILThreadPool.Wait4Workers(ref workerCount);
}
#endregion
return new ILRetLogical(retStorage);
}
}
/// Elementwise logical 'not equal' operator
/// Input array A
/// Input array B
/// Logical array having '1' for elements in A not equal to corresponding elements in B, '0' else
/// On empty input an empty array will be returned.
/// A and/or B may be scalar. The scalar value will be applied on all elements of the other array.
/// If neither A nor B is scalar or empty, the dimensions of both arrays must match.
public unsafe static ILRetLogical neq(ILInArray A, ILInArray B) {
using (ILScope.Enter(A, B)) {
int outLen;
BinOpItMode mode;
byte[] retArr;
complex[] arrA = A.GetArrayForRead();
complex[] arrB = B.GetArrayForRead();
ILSize outDims;
if (A.IsScalar) {
if (B.IsScalar) {
return new ILRetLogical(new byte[1] { (A.GetValue(0) != B.GetValue(0)) ? (byte)1 : (byte)0 });
} else if (B.IsEmpty) {
return new ILRetLogical(B.Size);
} else {
outLen = B.S.NumberOfElements;
retArr = ILMemoryPool.Pool.New(outLen);
mode = BinOpItMode.SAN;
}
outDims = B.Size;
} else {
outDims = A.Size;
if (B.IsScalar) {
if (A.IsEmpty) {
return new ILRetLogical(A.Size);
}
outLen = A.S.NumberOfElements;
retArr = ILMemoryPool.Pool.New(outLen);
mode = BinOpItMode.ASN;
} else {
// array + array
if (!A.Size.IsSameSize(B.Size)) {
return neqEx(A,B);
}
outLen = A.S.NumberOfElements;
retArr = ILMemoryPool.Pool.New(outLen);
mode = BinOpItMode.AAN;
}
}
int workerCount = 1;
Action worker = data => {
Tuple range
= (Tuple)data;
byte* cLast, cp = (byte*)range.Item5 + range.Item1;
complex scalar;
cLast = cp + range.Item2;
#region loops
switch (mode) {
case BinOpItMode.AAN:
complex* ap = ((complex*)range.Item3 + range.Item1);
complex* bp = ((complex*)range.Item4 + range.Item1);
while (cp < cLast) {
*cp = (*ap != *bp) ? (byte)1 : (byte)0;
cp++;
ap++;
bp++;
}
break;
case BinOpItMode.ASN:
ap = ((complex*)range.Item3 + range.Item1);
scalar = *((complex*)range.Item4);
while (cp < cLast) {
*cp = (*ap != scalar) ? (byte)1 : (byte)0;
cp++;
ap++;
}
break;
case BinOpItMode.SAN:
scalar = *((complex*)range.Item3);
bp = ((complex*)range.Item4 + range.Item1);
while (cp < cLast) {
*cp = (scalar != *bp) ? (byte)1 : (byte)0;
cp++;
bp++;
}
break;
default:
break;
}
#endregion
System.Threading.Interlocked.Decrement(ref workerCount);
};
#region do the work
fixed (complex* arrAP = arrA)
fixed (complex* arrBP = arrB)
fixed (byte* retArrP = retArr) {
int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength;
if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) {
if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
workItemLength = outLen / workItemCount;
} else {
workItemLength = outLen / 2;
workItemCount = 2;
}
} else {
workItemLength = outLen;
workItemCount = 1;
}
for (; i < workItemCount - 1; i++) {
Tuple range
= new Tuple
(i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode);
System.Threading.Interlocked.Increment(ref workerCount);
ILThreadPool.QueueUserWorkItem(i, worker, range);
}
// the last (or may the only) chunk is done right here
worker(new Tuple
(i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode));
ILThreadPool.Wait4Workers(ref workerCount);
}
#endregion
return new ILRetLogical(retArr, outDims);
}
}
private static unsafe ILRetLogical neqEx(ILInArray A, ILInArray B) {
using (ILScope.Enter(A, B)) {
#region parameter checking
if (isnull(A) || isnull(B))
return new ILRetLogical(ILSize.Empty00);
if (A.IsEmpty) {
return new ILRetLogical(B.S);
} else if (B.IsEmpty) {
return new ILRetLogical(A.S);
}
//if (A.IsScalar || B.IsScalar || A.D.IsSameSize(B.D))
// return add(A,B);
int dim = -1;
for (int l = 0; l < Math.Max(A.S.NumberOfDimensions, B.S.NumberOfDimensions); l++) {
if (A.S[l] != B.S[l]) {
if (dim >= 0 || (A.S[l] != 1 && B.S[l] != 1)) {
throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B");
}
dim = l;
}
}
if (dim > 1)
throw new ILArgumentException("singleton dimension expansion currently is only supported for colum- and row vectors");
#endregion
#region parameter preparation
byte[] retArr;
complex[] arrA = A.GetArrayForRead();
complex[] arrB = B.GetArrayForRead();
ILSize outDims;
BinOptItExMode mode;
int arrInc = 0;
int arrStepInc = 0;
int dimLen = 0;
if (A.IsVector) {
outDims = B.S;
retArr = ILMemoryPool.Pool.New(outDims.NumberOfElements);
mode = BinOptItExMode.VAN;
dimLen = A.Length;
} else if (B.IsVector) {
outDims = A.S;
retArr = ILMemoryPool.Pool.New(outDims.NumberOfElements);
mode = BinOptItExMode.AVN;
dimLen = B.Length;
} else {
throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B");
}
arrInc = (dim == 0) ? outDims.SequentialIndexDistance(1) : outDims.SequentialIndexDistance(0);
arrStepInc = outDims.SequentialIndexDistance(dim);
#endregion
#region worker loops definition
ILLogicalStorage retStorage = new ILLogicalStorage(retArr, outDims);
int workerCount = 1;
Action worker = data => {
// expects: iStart, iLen, ap, bp, cp
Tuple range =
(Tuple)data;
complex* ap;
complex* bp;
byte* cp;
switch (mode) {
case BinOptItExMode.VAN:
for (int s = 0; s < range.Item2; s++) {
ap = (complex*)range.Item3;
bp = (complex*)range.Item4 + range.Item1 + s * arrStepInc; ;
cp = (byte*)range.Item5 + range.Item1 + s * arrStepInc;
for (int l = 0; l < dimLen; l++) {
*cp = (*ap != *bp) ? (byte)1 : (byte)0;
ap++;
bp += arrInc;
cp += arrInc;
}
}
break;
case BinOptItExMode.AVN:
for (int s = 0; s < range.Item2; s++) {
ap = (complex*)range.Item3 + range.Item1 + s * arrStepInc;
bp = (complex*)range.Item4;
cp = (byte*)range.Item5 + range.Item1 + s * arrStepInc;
for (int l = 0; l < dimLen; l++) {
*cp = (*ap != *bp) ? (byte)1 : (byte)0;
ap += arrInc;
bp++;
cp += arrInc;
}
}
break;
}
System.Threading.Interlocked.Decrement(ref workerCount);
};
#endregion
#region work distribution
int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength;
int outLen = outDims.NumberOfElements;
if (Settings.s_maxNumberThreads > 1 && outLen / 2 >= Settings.s_minParallelElement1Count) {
if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
workItemLength = outLen / dimLen / workItemCount;
//workItemLength = (int)((double)outLen / workItemCount * 1.05);
} else {
workItemLength = outLen / dimLen / 2;
workItemCount = 2;
}
} else {
workItemLength = outLen / dimLen;
workItemCount = 1;
}
fixed ( complex* arrAP = arrA)
fixed ( complex* arrBP = arrB)
fixed (byte* retArrP = retArr) {
for (; i < workItemCount - 1; i++) {
Tuple range
= new Tuple
(i * workItemLength * arrStepInc, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP);
System.Threading.Interlocked.Increment(ref workerCount);
ILThreadPool.QueueUserWorkItem(i, worker, range);
}
// the last (or may the only) chunk is done right here
//System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
worker(new Tuple
(i * workItemLength * arrStepInc, (outLen / dimLen) - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP));
ILThreadPool.Wait4Workers(ref workerCount);
}
#endregion
return new ILRetLogical(retStorage);
}
}
/// Elementwise logical 'not equal' operator
/// Input array A
/// Input array B
/// Logical array having '1' for elements in A not equal to corresponding elements in B, '0' else
/// On empty input an empty array will be returned.
/// A and/or B may be scalar. The scalar value will be applied on all elements of the other array.
/// If neither A nor B is scalar or empty, the dimensions of both arrays must match.
public unsafe static ILRetLogical neq(ILInArray A, ILInArray B) {
using (ILScope.Enter(A, B)) {
int outLen;
BinOpItMode mode;
byte[] retArr;
byte[] arrA = A.GetArrayForRead();
byte[] arrB = B.GetArrayForRead();
ILSize outDims;
if (A.IsScalar) {
if (B.IsScalar) {
return new ILRetLogical(new byte[1] { (A.GetValue(0) != B.GetValue(0)) ? (byte)1 : (byte)0 });
} else if (B.IsEmpty) {
return new ILRetLogical(B.Size);
} else {
outLen = B.S.NumberOfElements;
retArr = ILMemoryPool.Pool.New(outLen);
mode = BinOpItMode.SAN;
}
outDims = B.Size;
} else {
outDims = A.Size;
if (B.IsScalar) {
if (A.IsEmpty) {
return new ILRetLogical(A.Size);
}
outLen = A.S.NumberOfElements;
retArr = ILMemoryPool.Pool.New(outLen);
mode = BinOpItMode.ASN;
} else {
// array + array
if (!A.Size.IsSameSize(B.Size)) {
return neqEx(A,B);
}
outLen = A.S.NumberOfElements;
retArr = ILMemoryPool.Pool.New(outLen);
mode = BinOpItMode.AAN;
}
}
int workerCount = 1;
Action worker = data => {
Tuple range
= (Tuple)data;
byte* cLast, cp = (byte*)range.Item5 + range.Item1;
byte scalar;
cLast = cp + range.Item2;
#region loops
switch (mode) {
case BinOpItMode.AAN:
byte* ap = ((byte*)range.Item3 + range.Item1);
byte* bp = ((byte*)range.Item4 + range.Item1);
while (cp < cLast) {
*cp = (*ap != *bp) ? (byte)1 : (byte)0;
cp++;
ap++;
bp++;
}
break;
case BinOpItMode.ASN:
ap = ((byte*)range.Item3 + range.Item1);
scalar = *((byte*)range.Item4);
while (cp < cLast) {
*cp = (*ap != scalar) ? (byte)1 : (byte)0;
cp++;
ap++;
}
break;
case BinOpItMode.SAN:
scalar = *((byte*)range.Item3);
bp = ((byte*)range.Item4 + range.Item1);
while (cp < cLast) {
*cp = (scalar != *bp) ? (byte)1 : (byte)0;
cp++;
bp++;
}
break;
default:
break;
}
#endregion
System.Threading.Interlocked.Decrement(ref workerCount);
};
#region do the work
fixed (byte* arrAP = arrA)
fixed (byte* arrBP = arrB)
fixed (byte* retArrP = retArr) {
int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength;
if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) {
if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
workItemLength = outLen / workItemCount;
} else {
workItemLength = outLen / 2;
workItemCount = 2;
}
} else {
workItemLength = outLen;
workItemCount = 1;
}
for (; i < workItemCount - 1; i++) {
Tuple range
= new Tuple
(i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode);
System.Threading.Interlocked.Increment(ref workerCount);
ILThreadPool.QueueUserWorkItem(i, worker, range);
}
// the last (or may the only) chunk is done right here
worker(new Tuple
(i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode));
ILThreadPool.Wait4Workers(ref workerCount);
}
#endregion
return new ILRetLogical(retArr, outDims);
}
}
private static unsafe ILRetLogical neqEx(ILInArray A, ILInArray B) {
using (ILScope.Enter(A, B)) {
#region parameter checking
if (isnull(A) || isnull(B))
return new ILRetLogical(ILSize.Empty00);
if (A.IsEmpty) {
return new ILRetLogical(B.S);
} else if (B.IsEmpty) {
return new ILRetLogical(A.S);
}
//if (A.IsScalar || B.IsScalar || A.D.IsSameSize(B.D))
// return add(A,B);
int dim = -1;
for (int l = 0; l < Math.Max(A.S.NumberOfDimensions, B.S.NumberOfDimensions); l++) {
if (A.S[l] != B.S[l]) {
if (dim >= 0 || (A.S[l] != 1 && B.S[l] != 1)) {
throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B");
}
dim = l;
}
}
if (dim > 1)
throw new ILArgumentException("singleton dimension expansion currently is only supported for colum- and row vectors");
#endregion
#region parameter preparation
byte[] retArr;
byte[] arrA = A.GetArrayForRead();
byte[] arrB = B.GetArrayForRead();
ILSize outDims;
BinOptItExMode mode;
int arrInc = 0;
int arrStepInc = 0;
int dimLen = 0;
if (A.IsVector) {
outDims = B.S;
retArr = ILMemoryPool.Pool.New(outDims.NumberOfElements);
mode = BinOptItExMode.VAN;
dimLen = A.Length;
} else if (B.IsVector) {
outDims = A.S;
retArr = ILMemoryPool.Pool.New(outDims.NumberOfElements);
mode = BinOptItExMode.AVN;
dimLen = B.Length;
} else {
throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B");
}
arrInc = (dim == 0) ? outDims.SequentialIndexDistance(1) : outDims.SequentialIndexDistance(0);
arrStepInc = outDims.SequentialIndexDistance(dim);
#endregion
#region worker loops definition
ILLogicalStorage retStorage = new ILLogicalStorage(retArr, outDims);
int workerCount = 1;
Action worker = data => {
// expects: iStart, iLen, ap, bp, cp
Tuple range =
(Tuple)data;
byte* ap;
byte* bp;
byte* cp;
switch (mode) {
case BinOptItExMode.VAN:
for (int s = 0; s < range.Item2; s++) {
ap = (byte*)range.Item3;
bp = (byte*)range.Item4 + range.Item1 + s * arrStepInc; ;
cp = (byte*)range.Item5 + range.Item1 + s * arrStepInc;
for (int l = 0; l < dimLen; l++) {
*cp = (*ap != *bp) ? (byte)1 : (byte)0;
ap++;
bp += arrInc;
cp += arrInc;
}
}
break;
case BinOptItExMode.AVN:
for (int s = 0; s < range.Item2; s++) {
ap = (byte*)range.Item3 + range.Item1 + s * arrStepInc;
bp = (byte*)range.Item4;
cp = (byte*)range.Item5 + range.Item1 + s * arrStepInc;
for (int l = 0; l < dimLen; l++) {
*cp = (*ap != *bp) ? (byte)1 : (byte)0;
ap += arrInc;
bp++;
cp += arrInc;
}
}
break;
}
System.Threading.Interlocked.Decrement(ref workerCount);
};
#endregion
#region work distribution
int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength;
int outLen = outDims.NumberOfElements;
if (Settings.s_maxNumberThreads > 1 && outLen / 2 >= Settings.s_minParallelElement1Count) {
if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
workItemLength = outLen / dimLen / workItemCount;
//workItemLength = (int)((double)outLen / workItemCount * 1.05);
} else {
workItemLength = outLen / dimLen / 2;
workItemCount = 2;
}
} else {
workItemLength = outLen / dimLen;
workItemCount = 1;
}
fixed ( byte* arrAP = arrA)
fixed ( byte* arrBP = arrB)
fixed (byte* retArrP = retArr) {
for (; i < workItemCount - 1; i++) {
Tuple range
= new Tuple
(i * workItemLength * arrStepInc, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP);
System.Threading.Interlocked.Increment(ref workerCount);
ILThreadPool.QueueUserWorkItem(i, worker, range);
}
// the last (or may the only) chunk is done right here
//System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
worker(new Tuple
(i * workItemLength * arrStepInc, (outLen / dimLen) - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP));
ILThreadPool.Wait4Workers(ref workerCount);
}
#endregion
return new ILRetLogical(retStorage);
}
}
/// Elementwise logical 'not equal' operator
/// Input array A
/// Input array B
/// Logical array having '1' for elements in A not equal to corresponding elements in B, '0' else
/// On empty input an empty array will be returned.
/// A and/or B may be scalar. The scalar value will be applied on all elements of the other array.
/// If neither A nor B is scalar or empty, the dimensions of both arrays must match.
public unsafe static ILRetLogical neq(ILInArray A, ILInArray B) {
using (ILScope.Enter(A, B)) {
int outLen;
BinOpItMode mode;
byte[] retArr;
double[] arrA = A.GetArrayForRead();
double[] arrB = B.GetArrayForRead();
ILSize outDims;
if (A.IsScalar) {
if (B.IsScalar) {
return new ILRetLogical(new byte[1] { (A.GetValue(0) != B.GetValue(0)) ? (byte)1 : (byte)0 });
} else if (B.IsEmpty) {
return new ILRetLogical(B.Size);
} else {
outLen = B.S.NumberOfElements;
retArr = ILMemoryPool.Pool.New(outLen);
mode = BinOpItMode.SAN;
}
outDims = B.Size;
} else {
outDims = A.Size;
if (B.IsScalar) {
if (A.IsEmpty) {
return new ILRetLogical(A.Size);
}
outLen = A.S.NumberOfElements;
retArr = ILMemoryPool.Pool.New(outLen);
mode = BinOpItMode.ASN;
} else {
// array + array
if (!A.Size.IsSameSize(B.Size)) {
return neqEx(A,B);
}
outLen = A.S.NumberOfElements;
retArr = ILMemoryPool.Pool.New(outLen);
mode = BinOpItMode.AAN;
}
}
int workerCount = 1;
Action worker = data => {
Tuple range
= (Tuple)data;
byte* cLast, cp = (byte*)range.Item5 + range.Item1;
double scalar;
cLast = cp + range.Item2;
#region loops
switch (mode) {
case BinOpItMode.AAN:
double* ap = ((double*)range.Item3 + range.Item1);
double* bp = ((double*)range.Item4 + range.Item1);
while (cp < cLast) {
*cp = (*ap != *bp) ? (byte)1 : (byte)0;
cp++;
ap++;
bp++;
}
break;
case BinOpItMode.ASN:
ap = ((double*)range.Item3 + range.Item1);
scalar = *((double*)range.Item4);
while (cp < cLast) {
*cp = (*ap != scalar) ? (byte)1 : (byte)0;
cp++;
ap++;
}
break;
case BinOpItMode.SAN:
scalar = *((double*)range.Item3);
bp = ((double*)range.Item4 + range.Item1);
while (cp < cLast) {
*cp = (scalar != *bp) ? (byte)1 : (byte)0;
cp++;
bp++;
}
break;
default:
break;
}
#endregion
System.Threading.Interlocked.Decrement(ref workerCount);
};
#region do the work
fixed (double* arrAP = arrA)
fixed (double* arrBP = arrB)
fixed (byte* retArrP = retArr) {
int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength;
if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) {
if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
workItemLength = outLen / workItemCount;
} else {
workItemLength = outLen / 2;
workItemCount = 2;
}
} else {
workItemLength = outLen;
workItemCount = 1;
}
for (; i < workItemCount - 1; i++) {
Tuple range
= new Tuple
(i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode);
System.Threading.Interlocked.Increment(ref workerCount);
ILThreadPool.QueueUserWorkItem(i, worker, range);
}
// the last (or may the only) chunk is done right here
worker(new Tuple
(i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode));
ILThreadPool.Wait4Workers(ref workerCount);
}
#endregion
return new ILRetLogical(retArr, outDims);
}
}
private static unsafe ILRetLogical neqEx(ILInArray A, ILInArray B) {
using (ILScope.Enter(A, B)) {
#region parameter checking
if (isnull(A) || isnull(B))
return new ILRetLogical(ILSize.Empty00);
if (A.IsEmpty) {
return new ILRetLogical(B.S);
} else if (B.IsEmpty) {
return new ILRetLogical(A.S);
}
//if (A.IsScalar || B.IsScalar || A.D.IsSameSize(B.D))
// return add(A,B);
int dim = -1;
for (int l = 0; l < Math.Max(A.S.NumberOfDimensions, B.S.NumberOfDimensions); l++) {
if (A.S[l] != B.S[l]) {
if (dim >= 0 || (A.S[l] != 1 && B.S[l] != 1)) {
throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B");
}
dim = l;
}
}
if (dim > 1)
throw new ILArgumentException("singleton dimension expansion currently is only supported for colum- and row vectors");
#endregion
#region parameter preparation
byte[] retArr;
double[] arrA = A.GetArrayForRead();
double[] arrB = B.GetArrayForRead();
ILSize outDims;
BinOptItExMode mode;
int arrInc = 0;
int arrStepInc = 0;
int dimLen = 0;
if (A.IsVector) {
outDims = B.S;
retArr = ILMemoryPool.Pool.New(outDims.NumberOfElements);
mode = BinOptItExMode.VAN;
dimLen = A.Length;
} else if (B.IsVector) {
outDims = A.S;
retArr = ILMemoryPool.Pool.New(outDims.NumberOfElements);
mode = BinOptItExMode.AVN;
dimLen = B.Length;
} else {
throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B");
}
arrInc = (dim == 0) ? outDims.SequentialIndexDistance(1) : outDims.SequentialIndexDistance(0);
arrStepInc = outDims.SequentialIndexDistance(dim);
#endregion
#region worker loops definition
ILLogicalStorage retStorage = new ILLogicalStorage(retArr, outDims);
int workerCount = 1;
Action worker = data => {
// expects: iStart, iLen, ap, bp, cp
Tuple range =
(Tuple)data;
double* ap;
double* bp;
byte* cp;
switch (mode) {
case BinOptItExMode.VAN:
for (int s = 0; s < range.Item2; s++) {
ap = (double*)range.Item3;
bp = (double*)range.Item4 + range.Item1 + s * arrStepInc; ;
cp = (byte*)range.Item5 + range.Item1 + s * arrStepInc;
for (int l = 0; l < dimLen; l++) {
*cp = (*ap != *bp) ? (byte)1 : (byte)0;
ap++;
bp += arrInc;
cp += arrInc;
}
}
break;
case BinOptItExMode.AVN:
for (int s = 0; s < range.Item2; s++) {
ap = (double*)range.Item3 + range.Item1 + s * arrStepInc;
bp = (double*)range.Item4;
cp = (byte*)range.Item5 + range.Item1 + s * arrStepInc;
for (int l = 0; l < dimLen; l++) {
*cp = (*ap != *bp) ? (byte)1 : (byte)0;
ap += arrInc;
bp++;
cp += arrInc;
}
}
break;
}
System.Threading.Interlocked.Decrement(ref workerCount);
};
#endregion
#region work distribution
int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength;
int outLen = outDims.NumberOfElements;
if (Settings.s_maxNumberThreads > 1 && outLen / 2 >= Settings.s_minParallelElement1Count) {
if (outLen / workItemCount > Settings.s_minParallelElement1Count) {
workItemLength = outLen / dimLen / workItemCount;
//workItemLength = (int)((double)outLen / workItemCount * 1.05);
} else {
workItemLength = outLen / dimLen / 2;
workItemCount = 2;
}
} else {
workItemLength = outLen / dimLen;
workItemCount = 1;
}
fixed ( double* arrAP = arrA)
fixed ( double* arrBP = arrB)
fixed (byte* retArrP = retArr) {
for (; i < workItemCount - 1; i++) {
Tuple range
= new Tuple
(i * workItemLength * arrStepInc, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP);
System.Threading.Interlocked.Increment(ref workerCount);
ILThreadPool.QueueUserWorkItem(i, worker, range);
}
// the last (or may the only) chunk is done right here
//System.Threading.Interlocked.Increment(ref retStorage.PendingTasks);
worker(new Tuple
(i * workItemLength * arrStepInc, (outLen / dimLen) - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP));
ILThreadPool.Wait4Workers(ref workerCount);
}
#endregion
return new ILRetLogical(retStorage);
}
}
#endregion HYCALPER AUTO GENERATED CODE
///
/// Elementwise logical 'not equal' operator
///
/// Input array A
/// Input array B
/// Logical array having '1' for elements in A not equal elements in B, '0' else
/// On empty input - empty array will be returned.
/// A and / or B may be scalar. The scalar value will operate on all elements of the other arrays in this case.
/// If neither of A or B is scalar or empty, the dimensions of both arrays must match.
/// if neither of A or B is scalar and the size of both arrays does not match
public static ILRetLogical neq (ILInArray A, ILInArray B) {
if (object.Equals(A,null))
throw new ILArgumentException("input argurment A must not be null!");
if (object.Equals(B,null))
throw new ILArgumentException("input argurment B must not be null!");
if (!A.Size.IsSameShape(B.Size))
throw new ILArgumentException("input arrays must have the same size");
if (A.IsEmpty || B.IsEmpty)
return new ILRetLogical(ILSize.Empty00);
ILRetLogical ret = null;
string scalarValue;
ILSize retDim = null;
byte[] retArr = null;
if (A.IsScalar) {
if (B.IsScalar) {
retDim = new ILSize(1,1);
ret = new ILRetLogical(new byte[1]{(A.GetValue(0) != B.GetValue(0))?(byte)1:(byte)0},1,1);
} else {
retDim = B.Size;
int len = B.Size.NumberOfElements;
retArr = new byte[len];
scalarValue = A.GetValue(0);
for (int i = 0; i < len; i++) {
if (scalarValue != B.GetValue(i)) {
retArr[i] = 1;
}
}
}
} else {
retDim = A.Size;
if (B.IsScalar) {
int len = A.Size.NumberOfElements;
retArr = new byte[len];
scalarValue = B.GetValue(0);
for (int i = 0; i < len; i++) {
if (scalarValue != A.GetValue(i))
retArr[i] = 1;
}
} else {
if (!A.Size.IsSameSize(B.Size))
throw new ILDimensionMismatchException("neq: size of arrays must match!");
int len = A.Size.NumberOfElements;
retArr = new byte[len];
for (int i = 0; i < len; i++) {
if (A.GetValue(i) != B.GetValue(i))
retArr[i] = 1;
}
}
}
return new ILRetLogical(retArr,retDim);
}
}
}