/// /// This file is part of ILNumerics Community Edition. /// /// ILNumerics Community Edition - high performance computing for applications. /// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net /// /// ILNumerics Community Edition is free software: you can redistribute it and/or modify /// it under the terms of the GNU General Public License version 3 as published by /// the Free Software Foundation. /// /// ILNumerics Community Edition is distributed in the hope that it will be useful, /// but WITHOUT ANY WARRANTY; without even the implied warranty of /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the /// GNU General Public License for more details. /// /// You should have received a copy of the GNU General Public License /// along with ILNumerics Community Edition. See the file License.txt in the root /// of your distribution package. If not, see . /// /// In addition this software uses the following components and/or licenses: /// /// ================================================================================= /// The Open Toolkit Library License /// /// Copyright (c) 2006 - 2009 the Open Toolkit library. /// /// Permission is hereby granted, free of charge, to any person obtaining a copy /// of this software and associated documentation files (the "Software"), to deal /// in the Software without restriction, including without limitation the rights to /// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of /// the Software, and to permit persons to whom the Software is furnished to do /// so, subject to the following conditions: /// /// The above copyright notice and this permission notice shall be included in all /// copies or substantial portions of the Software. /// /// ================================================================================= /// using System; using System.Collections.Generic; using System.Text; using ILNumerics; using ILNumerics.Exceptions; using ILNumerics.Storage; using ILNumerics.Misc; namespace ILNumerics { public partial class ILMath { #region HYCALPER AUTO GENERATED CODE /// Locate infinite value elements /// Input array /// Logical array with 1 if the corresponding elements of input array is infinite, 0 else. /// If the input array is empty, an empty array will be returned. /// The array returned will be a dense array. public unsafe static ILRetLogical isinf (ILInArray< double > A) { using (ILScope.Enter(A)) { if (A.IsEmpty) return new ILRetLogical(A.Size); ILSize inDim = A.Size; double[] arrA = A.GetArrayForRead(); byte [] retArr; int outLen = inDim.NumberOfElements; bool inplace = true; if (true){ retArr = ILMemoryPool.Pool.New(outLen); inplace = false; } int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength, workerCount = 1; if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) { if (outLen / workItemCount > Settings.s_minParallelElement1Count) { workItemLength = outLen / workItemCount; //workItemLength = (int)((double)outLen / workItemCount * 1.05); } else { workItemLength = outLen / 2; workItemCount = 2; } } else { workItemLength = outLen; workItemCount = 1; } ILDenseStorage retStorage = new ILDenseStorage(retArr, inDim); Action worker = data => { Tuple range = (Tuple)data; byte* cp = ((byte*)range.Item4 + range.Item1); int len = range.Item2; if (range.Item5) { // inplace while (len > 20) { cp[0] = Double.IsInfinity(cp[0] ) ?(byte)1:(byte)0;; cp[1] = Double.IsInfinity(cp[1] ) ?(byte)1:(byte)0;; cp[2] = Double.IsInfinity(cp[2] ) ?(byte)1:(byte)0;; cp[3] = Double.IsInfinity(cp[3] ) ?(byte)1:(byte)0;; cp[4] = Double.IsInfinity(cp[4] ) ?(byte)1:(byte)0;; cp[5] = Double.IsInfinity(cp[5] ) ?(byte)1:(byte)0;; cp[6] = Double.IsInfinity(cp[6] ) ?(byte)1:(byte)0;; cp[7] = Double.IsInfinity(cp[7] ) ?(byte)1:(byte)0;; cp[8] = Double.IsInfinity(cp[8] ) ?(byte)1:(byte)0;; cp[9] = Double.IsInfinity(cp[9] ) ?(byte)1:(byte)0;; cp[10] = Double.IsInfinity(cp[10] ) ?(byte)1:(byte)0;; cp[11] = Double.IsInfinity(cp[11] ) ?(byte)1:(byte)0;; cp[12] = Double.IsInfinity(cp[12] ) ?(byte)1:(byte)0;; cp[13] = Double.IsInfinity(cp[13] ) ?(byte)1:(byte)0;; cp[14] = Double.IsInfinity(cp[14] ) ?(byte)1:(byte)0;; cp[15] = Double.IsInfinity(cp[15] ) ?(byte)1:(byte)0;; cp[16] = Double.IsInfinity(cp[16] ) ?(byte)1:(byte)0;; cp[17] = Double.IsInfinity(cp[17] ) ?(byte)1:(byte)0;; cp[18] = Double.IsInfinity(cp[18] ) ?(byte)1:(byte)0;; cp[19] = Double.IsInfinity(cp[19] ) ?(byte)1:(byte)0;; cp[20] = Double.IsInfinity(cp[20] ) ?(byte)1:(byte)0;; cp+=21; len -= 21; } while (len-- > 0) { *cp = Double.IsInfinity(*cp ) ?(byte)1:(byte)0;; cp++; } } else { double* ap = ((double*)range.Item3 + range.Item1); while (len > 20) { cp[0] = Double.IsInfinity(ap[0] ) ?(byte)1:(byte)0;; cp[1] = Double.IsInfinity(ap[1] ) ?(byte)1:(byte)0;; cp[2] = Double.IsInfinity(ap[2] ) ?(byte)1:(byte)0;; cp[3] = Double.IsInfinity(ap[3] ) ?(byte)1:(byte)0;; cp[4] = Double.IsInfinity(ap[4] ) ?(byte)1:(byte)0;; cp[5] = Double.IsInfinity(ap[5] ) ?(byte)1:(byte)0;; cp[6] = Double.IsInfinity(ap[6] ) ?(byte)1:(byte)0;; cp[7] = Double.IsInfinity(ap[7] ) ?(byte)1:(byte)0;; cp[8] = Double.IsInfinity(ap[8] ) ?(byte)1:(byte)0;; cp[9] = Double.IsInfinity(ap[9] ) ?(byte)1:(byte)0;; cp[10] = Double.IsInfinity(ap[10] ) ?(byte)1:(byte)0;; cp[11] = Double.IsInfinity(ap[11] ) ?(byte)1:(byte)0;; cp[12] = Double.IsInfinity(ap[12] ) ?(byte)1:(byte)0;; cp[13] = Double.IsInfinity(ap[13] ) ?(byte)1:(byte)0;; cp[14] = Double.IsInfinity(ap[14] ) ?(byte)1:(byte)0;; cp[15] = Double.IsInfinity(ap[15] ) ?(byte)1:(byte)0;; cp[16] = Double.IsInfinity(ap[16] ) ?(byte)1:(byte)0;; cp[17] = Double.IsInfinity(ap[17] ) ?(byte)1:(byte)0;; cp[18] = Double.IsInfinity(ap[18] ) ?(byte)1:(byte)0;; cp[19] = Double.IsInfinity(ap[19] ) ?(byte)1:(byte)0;; cp[20] = Double.IsInfinity(ap[20] ) ?(byte)1:(byte)0;; ap += 21; cp += 21; len -= 21; } while (len-- > 0) { *cp = Double.IsInfinity(*ap ) ?(byte)1:(byte)0;; ap++; cp++; } } System.Threading.Interlocked.Decrement(ref workerCount); }; fixed ( double* arrAP = arrA) fixed ( byte* retArrP = retArr) { for (; i < workItemCount - 1; i++) { Tuple range = new Tuple (i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)retArrP, inplace); System.Threading.Interlocked.Increment(ref workerCount); ILThreadPool.QueueUserWorkItem(i,worker, range); } // the last (or may the only) chunk is done right here worker(new Tuple (i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)retArrP, inplace)); ILThreadPool.Wait4Workers(ref workerCount); } return new ILRetLogical(retStorage); } } /// Locate infinite value elements /// Input array /// Logical array with 1 if the corresponding elements of input array is infinite, 0 else. /// If the input array is empty, an empty array will be returned. /// The array returned will be a dense array. public unsafe static ILRetLogical isinf (ILInArray< float > A) { using (ILScope.Enter(A)) { if (A.IsEmpty) return new ILRetLogical(A.Size); ILSize inDim = A.Size; float[] arrA = A.GetArrayForRead(); byte [] retArr; int outLen = inDim.NumberOfElements; bool inplace = true; if (true){ retArr = ILMemoryPool.Pool.New(outLen); inplace = false; } int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength, workerCount = 1; if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) { if (outLen / workItemCount > Settings.s_minParallelElement1Count) { workItemLength = outLen / workItemCount; //workItemLength = (int)((double)outLen / workItemCount * 1.05); } else { workItemLength = outLen / 2; workItemCount = 2; } } else { workItemLength = outLen; workItemCount = 1; } ILDenseStorage retStorage = new ILDenseStorage(retArr, inDim); Action worker = data => { Tuple range = (Tuple)data; byte* cp = ((byte*)range.Item4 + range.Item1); int len = range.Item2; if (range.Item5) { // inplace while (len > 20) { cp[0] = Single.IsInfinity(cp[0] ) ?(byte)1:(byte)0;; cp[1] = Single.IsInfinity(cp[1] ) ?(byte)1:(byte)0;; cp[2] = Single.IsInfinity(cp[2] ) ?(byte)1:(byte)0;; cp[3] = Single.IsInfinity(cp[3] ) ?(byte)1:(byte)0;; cp[4] = Single.IsInfinity(cp[4] ) ?(byte)1:(byte)0;; cp[5] = Single.IsInfinity(cp[5] ) ?(byte)1:(byte)0;; cp[6] = Single.IsInfinity(cp[6] ) ?(byte)1:(byte)0;; cp[7] = Single.IsInfinity(cp[7] ) ?(byte)1:(byte)0;; cp[8] = Single.IsInfinity(cp[8] ) ?(byte)1:(byte)0;; cp[9] = Single.IsInfinity(cp[9] ) ?(byte)1:(byte)0;; cp[10] = Single.IsInfinity(cp[10] ) ?(byte)1:(byte)0;; cp[11] = Single.IsInfinity(cp[11] ) ?(byte)1:(byte)0;; cp[12] = Single.IsInfinity(cp[12] ) ?(byte)1:(byte)0;; cp[13] = Single.IsInfinity(cp[13] ) ?(byte)1:(byte)0;; cp[14] = Single.IsInfinity(cp[14] ) ?(byte)1:(byte)0;; cp[15] = Single.IsInfinity(cp[15] ) ?(byte)1:(byte)0;; cp[16] = Single.IsInfinity(cp[16] ) ?(byte)1:(byte)0;; cp[17] = Single.IsInfinity(cp[17] ) ?(byte)1:(byte)0;; cp[18] = Single.IsInfinity(cp[18] ) ?(byte)1:(byte)0;; cp[19] = Single.IsInfinity(cp[19] ) ?(byte)1:(byte)0;; cp[20] = Single.IsInfinity(cp[20] ) ?(byte)1:(byte)0;; cp+=21; len -= 21; } while (len-- > 0) { *cp = Single.IsInfinity(*cp ) ?(byte)1:(byte)0;; cp++; } } else { float* ap = ((float*)range.Item3 + range.Item1); while (len > 20) { cp[0] = Single.IsInfinity(ap[0] ) ?(byte)1:(byte)0;; cp[1] = Single.IsInfinity(ap[1] ) ?(byte)1:(byte)0;; cp[2] = Single.IsInfinity(ap[2] ) ?(byte)1:(byte)0;; cp[3] = Single.IsInfinity(ap[3] ) ?(byte)1:(byte)0;; cp[4] = Single.IsInfinity(ap[4] ) ?(byte)1:(byte)0;; cp[5] = Single.IsInfinity(ap[5] ) ?(byte)1:(byte)0;; cp[6] = Single.IsInfinity(ap[6] ) ?(byte)1:(byte)0;; cp[7] = Single.IsInfinity(ap[7] ) ?(byte)1:(byte)0;; cp[8] = Single.IsInfinity(ap[8] ) ?(byte)1:(byte)0;; cp[9] = Single.IsInfinity(ap[9] ) ?(byte)1:(byte)0;; cp[10] = Single.IsInfinity(ap[10] ) ?(byte)1:(byte)0;; cp[11] = Single.IsInfinity(ap[11] ) ?(byte)1:(byte)0;; cp[12] = Single.IsInfinity(ap[12] ) ?(byte)1:(byte)0;; cp[13] = Single.IsInfinity(ap[13] ) ?(byte)1:(byte)0;; cp[14] = Single.IsInfinity(ap[14] ) ?(byte)1:(byte)0;; cp[15] = Single.IsInfinity(ap[15] ) ?(byte)1:(byte)0;; cp[16] = Single.IsInfinity(ap[16] ) ?(byte)1:(byte)0;; cp[17] = Single.IsInfinity(ap[17] ) ?(byte)1:(byte)0;; cp[18] = Single.IsInfinity(ap[18] ) ?(byte)1:(byte)0;; cp[19] = Single.IsInfinity(ap[19] ) ?(byte)1:(byte)0;; cp[20] = Single.IsInfinity(ap[20] ) ?(byte)1:(byte)0;; ap += 21; cp += 21; len -= 21; } while (len-- > 0) { *cp = Single.IsInfinity(*ap ) ?(byte)1:(byte)0;; ap++; cp++; } } System.Threading.Interlocked.Decrement(ref workerCount); }; fixed ( float* arrAP = arrA) fixed ( byte* retArrP = retArr) { for (; i < workItemCount - 1; i++) { Tuple range = new Tuple (i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)retArrP, inplace); System.Threading.Interlocked.Increment(ref workerCount); ILThreadPool.QueueUserWorkItem(i,worker, range); } // the last (or may the only) chunk is done right here worker(new Tuple (i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)retArrP, inplace)); ILThreadPool.Wait4Workers(ref workerCount); } return new ILRetLogical(retStorage); } } /// Locate infinite value elements /// Input array /// Logical array with 1 if the corresponding elements of input array is infinite, 0 else. /// If the input array is empty, an empty array will be returned. /// The array returned will be a dense array. public unsafe static ILRetLogical isinf (ILInArray< fcomplex > A) { using (ILScope.Enter(A)) { if (A.IsEmpty) return new ILRetLogical(A.Size); ILSize inDim = A.Size; fcomplex[] arrA = A.GetArrayForRead(); byte [] retArr; int outLen = inDim.NumberOfElements; bool inplace = true; if (true){ retArr = ILMemoryPool.Pool.New(outLen); inplace = false; } int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength, workerCount = 1; if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) { if (outLen / workItemCount > Settings.s_minParallelElement1Count) { workItemLength = outLen / workItemCount; //workItemLength = (int)((double)outLen / workItemCount * 1.05); } else { workItemLength = outLen / 2; workItemCount = 2; } } else { workItemLength = outLen; workItemCount = 1; } ILDenseStorage retStorage = new ILDenseStorage(retArr, inDim); Action worker = data => { Tuple range = (Tuple)data; byte* cp = ((byte*)range.Item4 + range.Item1); int len = range.Item2; if (range.Item5) { // inplace while (len > 20) { cp[0] = fcomplex.IsInfinity(cp[0] ) ?(byte)1:(byte)0;; cp[1] = fcomplex.IsInfinity(cp[1] ) ?(byte)1:(byte)0;; cp[2] = fcomplex.IsInfinity(cp[2] ) ?(byte)1:(byte)0;; cp[3] = fcomplex.IsInfinity(cp[3] ) ?(byte)1:(byte)0;; cp[4] = fcomplex.IsInfinity(cp[4] ) ?(byte)1:(byte)0;; cp[5] = fcomplex.IsInfinity(cp[5] ) ?(byte)1:(byte)0;; cp[6] = fcomplex.IsInfinity(cp[6] ) ?(byte)1:(byte)0;; cp[7] = fcomplex.IsInfinity(cp[7] ) ?(byte)1:(byte)0;; cp[8] = fcomplex.IsInfinity(cp[8] ) ?(byte)1:(byte)0;; cp[9] = fcomplex.IsInfinity(cp[9] ) ?(byte)1:(byte)0;; cp[10] = fcomplex.IsInfinity(cp[10] ) ?(byte)1:(byte)0;; cp[11] = fcomplex.IsInfinity(cp[11] ) ?(byte)1:(byte)0;; cp[12] = fcomplex.IsInfinity(cp[12] ) ?(byte)1:(byte)0;; cp[13] = fcomplex.IsInfinity(cp[13] ) ?(byte)1:(byte)0;; cp[14] = fcomplex.IsInfinity(cp[14] ) ?(byte)1:(byte)0;; cp[15] = fcomplex.IsInfinity(cp[15] ) ?(byte)1:(byte)0;; cp[16] = fcomplex.IsInfinity(cp[16] ) ?(byte)1:(byte)0;; cp[17] = fcomplex.IsInfinity(cp[17] ) ?(byte)1:(byte)0;; cp[18] = fcomplex.IsInfinity(cp[18] ) ?(byte)1:(byte)0;; cp[19] = fcomplex.IsInfinity(cp[19] ) ?(byte)1:(byte)0;; cp[20] = fcomplex.IsInfinity(cp[20] ) ?(byte)1:(byte)0;; cp+=21; len -= 21; } while (len-- > 0) { *cp = fcomplex.IsInfinity(*cp ) ?(byte)1:(byte)0;; cp++; } } else { fcomplex* ap = ((fcomplex*)range.Item3 + range.Item1); while (len > 20) { cp[0] = fcomplex.IsInfinity(ap[0] ) ?(byte)1:(byte)0;; cp[1] = fcomplex.IsInfinity(ap[1] ) ?(byte)1:(byte)0;; cp[2] = fcomplex.IsInfinity(ap[2] ) ?(byte)1:(byte)0;; cp[3] = fcomplex.IsInfinity(ap[3] ) ?(byte)1:(byte)0;; cp[4] = fcomplex.IsInfinity(ap[4] ) ?(byte)1:(byte)0;; cp[5] = fcomplex.IsInfinity(ap[5] ) ?(byte)1:(byte)0;; cp[6] = fcomplex.IsInfinity(ap[6] ) ?(byte)1:(byte)0;; cp[7] = fcomplex.IsInfinity(ap[7] ) ?(byte)1:(byte)0;; cp[8] = fcomplex.IsInfinity(ap[8] ) ?(byte)1:(byte)0;; cp[9] = fcomplex.IsInfinity(ap[9] ) ?(byte)1:(byte)0;; cp[10] = fcomplex.IsInfinity(ap[10] ) ?(byte)1:(byte)0;; cp[11] = fcomplex.IsInfinity(ap[11] ) ?(byte)1:(byte)0;; cp[12] = fcomplex.IsInfinity(ap[12] ) ?(byte)1:(byte)0;; cp[13] = fcomplex.IsInfinity(ap[13] ) ?(byte)1:(byte)0;; cp[14] = fcomplex.IsInfinity(ap[14] ) ?(byte)1:(byte)0;; cp[15] = fcomplex.IsInfinity(ap[15] ) ?(byte)1:(byte)0;; cp[16] = fcomplex.IsInfinity(ap[16] ) ?(byte)1:(byte)0;; cp[17] = fcomplex.IsInfinity(ap[17] ) ?(byte)1:(byte)0;; cp[18] = fcomplex.IsInfinity(ap[18] ) ?(byte)1:(byte)0;; cp[19] = fcomplex.IsInfinity(ap[19] ) ?(byte)1:(byte)0;; cp[20] = fcomplex.IsInfinity(ap[20] ) ?(byte)1:(byte)0;; ap += 21; cp += 21; len -= 21; } while (len-- > 0) { *cp = fcomplex.IsInfinity(*ap ) ?(byte)1:(byte)0;; ap++; cp++; } } System.Threading.Interlocked.Decrement(ref workerCount); }; fixed ( fcomplex* arrAP = arrA) fixed ( byte* retArrP = retArr) { for (; i < workItemCount - 1; i++) { Tuple range = new Tuple (i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)retArrP, inplace); System.Threading.Interlocked.Increment(ref workerCount); ILThreadPool.QueueUserWorkItem(i,worker, range); } // the last (or may the only) chunk is done right here worker(new Tuple (i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)retArrP, inplace)); ILThreadPool.Wait4Workers(ref workerCount); } return new ILRetLogical(retStorage); } } /// Locate infinite value elements /// Input array /// Logical array with 1 if the corresponding elements of input array is infinite, 0 else. /// If the input array is empty, an empty array will be returned. /// The array returned will be a dense array. public unsafe static ILRetLogical isinf (ILInArray< complex > A) { using (ILScope.Enter(A)) { if (A.IsEmpty) return new ILRetLogical(A.Size); ILSize inDim = A.Size; complex[] arrA = A.GetArrayForRead(); byte [] retArr; int outLen = inDim.NumberOfElements; bool inplace = true; if (true){ retArr = ILMemoryPool.Pool.New(outLen); inplace = false; } int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength, workerCount = 1; if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) { if (outLen / workItemCount > Settings.s_minParallelElement1Count) { workItemLength = outLen / workItemCount; //workItemLength = (int)((double)outLen / workItemCount * 1.05); } else { workItemLength = outLen / 2; workItemCount = 2; } } else { workItemLength = outLen; workItemCount = 1; } ILDenseStorage retStorage = new ILDenseStorage(retArr, inDim); Action worker = data => { Tuple range = (Tuple)data; byte* cp = ((byte*)range.Item4 + range.Item1); int len = range.Item2; if (range.Item5) { // inplace while (len > 20) { cp[0] = complex.IsInfinity(cp[0] ) ?(byte)1:(byte)0;; cp[1] = complex.IsInfinity(cp[1] ) ?(byte)1:(byte)0;; cp[2] = complex.IsInfinity(cp[2] ) ?(byte)1:(byte)0;; cp[3] = complex.IsInfinity(cp[3] ) ?(byte)1:(byte)0;; cp[4] = complex.IsInfinity(cp[4] ) ?(byte)1:(byte)0;; cp[5] = complex.IsInfinity(cp[5] ) ?(byte)1:(byte)0;; cp[6] = complex.IsInfinity(cp[6] ) ?(byte)1:(byte)0;; cp[7] = complex.IsInfinity(cp[7] ) ?(byte)1:(byte)0;; cp[8] = complex.IsInfinity(cp[8] ) ?(byte)1:(byte)0;; cp[9] = complex.IsInfinity(cp[9] ) ?(byte)1:(byte)0;; cp[10] = complex.IsInfinity(cp[10] ) ?(byte)1:(byte)0;; cp[11] = complex.IsInfinity(cp[11] ) ?(byte)1:(byte)0;; cp[12] = complex.IsInfinity(cp[12] ) ?(byte)1:(byte)0;; cp[13] = complex.IsInfinity(cp[13] ) ?(byte)1:(byte)0;; cp[14] = complex.IsInfinity(cp[14] ) ?(byte)1:(byte)0;; cp[15] = complex.IsInfinity(cp[15] ) ?(byte)1:(byte)0;; cp[16] = complex.IsInfinity(cp[16] ) ?(byte)1:(byte)0;; cp[17] = complex.IsInfinity(cp[17] ) ?(byte)1:(byte)0;; cp[18] = complex.IsInfinity(cp[18] ) ?(byte)1:(byte)0;; cp[19] = complex.IsInfinity(cp[19] ) ?(byte)1:(byte)0;; cp[20] = complex.IsInfinity(cp[20] ) ?(byte)1:(byte)0;; cp+=21; len -= 21; } while (len-- > 0) { *cp = complex.IsInfinity(*cp ) ?(byte)1:(byte)0;; cp++; } } else { complex* ap = ((complex*)range.Item3 + range.Item1); while (len > 20) { cp[0] = complex.IsInfinity(ap[0] ) ?(byte)1:(byte)0;; cp[1] = complex.IsInfinity(ap[1] ) ?(byte)1:(byte)0;; cp[2] = complex.IsInfinity(ap[2] ) ?(byte)1:(byte)0;; cp[3] = complex.IsInfinity(ap[3] ) ?(byte)1:(byte)0;; cp[4] = complex.IsInfinity(ap[4] ) ?(byte)1:(byte)0;; cp[5] = complex.IsInfinity(ap[5] ) ?(byte)1:(byte)0;; cp[6] = complex.IsInfinity(ap[6] ) ?(byte)1:(byte)0;; cp[7] = complex.IsInfinity(ap[7] ) ?(byte)1:(byte)0;; cp[8] = complex.IsInfinity(ap[8] ) ?(byte)1:(byte)0;; cp[9] = complex.IsInfinity(ap[9] ) ?(byte)1:(byte)0;; cp[10] = complex.IsInfinity(ap[10] ) ?(byte)1:(byte)0;; cp[11] = complex.IsInfinity(ap[11] ) ?(byte)1:(byte)0;; cp[12] = complex.IsInfinity(ap[12] ) ?(byte)1:(byte)0;; cp[13] = complex.IsInfinity(ap[13] ) ?(byte)1:(byte)0;; cp[14] = complex.IsInfinity(ap[14] ) ?(byte)1:(byte)0;; cp[15] = complex.IsInfinity(ap[15] ) ?(byte)1:(byte)0;; cp[16] = complex.IsInfinity(ap[16] ) ?(byte)1:(byte)0;; cp[17] = complex.IsInfinity(ap[17] ) ?(byte)1:(byte)0;; cp[18] = complex.IsInfinity(ap[18] ) ?(byte)1:(byte)0;; cp[19] = complex.IsInfinity(ap[19] ) ?(byte)1:(byte)0;; cp[20] = complex.IsInfinity(ap[20] ) ?(byte)1:(byte)0;; ap += 21; cp += 21; len -= 21; } while (len-- > 0) { *cp = complex.IsInfinity(*ap ) ?(byte)1:(byte)0;; ap++; cp++; } } System.Threading.Interlocked.Decrement(ref workerCount); }; fixed ( complex* arrAP = arrA) fixed ( byte* retArrP = retArr) { for (; i < workItemCount - 1; i++) { Tuple range = new Tuple (i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)retArrP, inplace); System.Threading.Interlocked.Increment(ref workerCount); ILThreadPool.QueueUserWorkItem(i,worker, range); } // the last (or may the only) chunk is done right here worker(new Tuple (i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)retArrP, inplace)); ILThreadPool.Wait4Workers(ref workerCount); } return new ILRetLogical(retStorage); } } #endregion HYCALPER AUTO GENERATED CODE } }