///
/// This file is part of ILNumerics Community Edition.
///
/// ILNumerics Community Edition - high performance computing for applications.
/// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
///
/// ILNumerics Community Edition is free software: you can redistribute it and/or modify
/// it under the terms of the GNU General Public License version 3 as published by
/// the Free Software Foundation.
///
/// ILNumerics Community Edition is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with ILNumerics Community Edition. See the file License.txt in the root
/// of your distribution package. If not, see .
///
/// In addition this software uses the following components and/or licenses:
///
/// =================================================================================
/// The Open Toolkit Library License
///
/// Copyright (c) 2006 - 2009 the Open Toolkit library.
///
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights to
/// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
/// the Software, and to permit persons to whom the Software is furnished to do
/// so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in all
/// copies or substantial portions of the Software.
///
/// =================================================================================
///
using System;
using System.Collections.Generic;
using System.Text;
using ILNumerics;
using ILNumerics.Exceptions;
using ILNumerics.Storage;
using ILNumerics.Misc;
namespace ILNumerics {
public partial class ILMath {
///
/// Covariance matrix of A
///
/// Input vector or data matrix, samples in columns, variables in rows
/// [Optional] If true, calculate the best unbiased variance estimate if the observations are from a normal distribution. This normalizes by n-1 if n>1 (n = number of samples). If n == 1 normalization is always 1. If false always normalize by n.
/// Variance of vector A/Covariance matrix of A
/// If A is a vector cov(A) returns the variance of A
/// If A is a m x n matrix, where each of the n columns is an m-dimensional observation, cov(A) is the n x n covariance matrix.
/// The mean is removed from each column before calculating the result.
///
public static ILRetArray cov(ILInArray A, bool unbiased = true) {
using (ILScope.Enter(A)) {
if (isnull(A)) {
throw new ILArgumentException("Parameter A must not be null");
}
if (!A.IsMatrix)
throw new ILArgumentException("Input array A must be a matrix (2d)");
if (A.IsEmpty) {
if (A.S[0] == 0 && A.S[1] == 0)
return array(double.NaN, 1, 1);
return array(double.NaN, A.S[0], A.S[0]);
}
if (A.IsVector)
{
// A vector, return variance
int normFactor = unbiased ? (A.Size.NumberOfElements > 1 ? A.Size.NumberOfElements - 1 : 1) : A.Size.NumberOfElements;
ILArray AnoMean = A - mean(A);
return sum(multiplyElem(AnoMean, AnoMean)) / (double )normFactor;
// return zeros(A.D[0], A.D[0]);
}
else
{
int normFactor = unbiased ? (A.S[1] > 1 ? A.S[1] - 1 : 1) : A.S[1];
ILArray AnoMean = A - mean(A, 1);
return multiply(AnoMean, AnoMean.T) / (double )normFactor;
}
}
}
#region HYCALPER AUTO GENERATED CODE
///
/// Covariance matrix of A
///
/// Input vector or data matrix, samples in columns, variables in rows
/// [Optional] If true, calculate the best unbiased variance estimate if the observations are from a normal distribution. This normalizes by n-1 if n>1 (n = number of samples). If n == 1 normalization is always 1. If false always normalize by n.
/// Variance of vector A/Covariance matrix of A
/// If A is a vector cov(A) returns the variance of A
/// If A is a m x n matrix, where each of the n columns is an m-dimensional observation, cov(A) is the n x n covariance matrix.
/// The mean is removed from each column before calculating the result.
///
public static ILRetArray cov(ILInArray A, bool unbiased = true) {
using (ILScope.Enter(A)) {
if (isnull(A)) {
throw new ILArgumentException("Parameter A must not be null");
}
if (!A.IsMatrix)
throw new ILArgumentException("Input array A must be a matrix (2d)");
if (A.IsEmpty) {
if (A.S[0] == 0 && A.S[1] == 0)
return array(float.NaN, 1, 1);
return array(float.NaN, A.S[0], A.S[0]);
}
if (A.IsVector)
{
// A vector, return variance
int normFactor = unbiased ? (A.Size.NumberOfElements > 1 ? A.Size.NumberOfElements - 1 : 1) : A.Size.NumberOfElements;
ILArray AnoMean = A - mean(A);
return sum(multiplyElem(AnoMean, AnoMean)) / (float )normFactor;
// return zeros(A.D[0], A.D[0]);
}
else
{
int normFactor = unbiased ? (A.S[1] > 1 ? A.S[1] - 1 : 1) : A.S[1];
ILArray AnoMean = A - mean(A, 1);
return multiply(AnoMean, AnoMean.T) / (float )normFactor;
}
}
}
#endregion HYCALPER AUTO GENERATED CODE
}
}