///
/// This file is part of ILNumerics Community Edition.
///
/// ILNumerics Community Edition - high performance computing for applications.
/// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net
///
/// ILNumerics Community Edition is free software: you can redistribute it and/or modify
/// it under the terms of the GNU General Public License version 3 as published by
/// the Free Software Foundation.
///
/// ILNumerics Community Edition is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with ILNumerics Community Edition. See the file License.txt in the root
/// of your distribution package. If not, see .
///
/// In addition this software uses the following components and/or licenses:
///
/// =================================================================================
/// The Open Toolkit Library License
///
/// Copyright (c) 2006 - 2009 the Open Toolkit library.
///
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights to
/// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
/// the Software, and to permit persons to whom the Software is furnished to do
/// so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in all
/// copies or substantial portions of the Software.
///
/// =================================================================================
///
using System;
using System.Collections.Generic;
using System.Text;
using ILNumerics.Storage;
using ILNumerics.Misc;
using ILNumerics.Exceptions;
namespace ILNumerics {
public partial class ILMath {
#region HYCALPER AUTO GENERATED CODE
/// Determine, if any elements are nonzero
/// Input array
/// [Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).
/// Array of same size as A, having the specified or first non-singleton dimension reduced to 1, if any elements along that dimension are non-zero, '0' else.
public static ILRetLogical any (ILInArray A, int dim = -1) {
using (ILScope.Enter(A)) {
if (dim < 0)
dim = A.Size.WorkingDimension();
if (dim >= A.Size.NumberOfDimensions)
throw new ILArgumentException("dimension parameter out of range!");
if (A.IsEmpty)
return new ILRetLogical(A.Size);
if (A.IsScalar) {
return new ILRetLogical (new byte [1]{(A.GetValue(0) == 0.0 || double.IsNaN(A.GetValue(0)))?(byte)0:(byte)1},1,1);
}
ILSize inDim = A.Size;
int[] newDims = inDim.ToIntArray();
int tmpCount = 0;
int newLength;
byte[] retArr;
// build ILSize
newLength = inDim.NumberOfElements / newDims[dim];
newDims[dim] = 1;
retArr = ILMemoryPool.Pool.New< byte>(newLength);
ILSize newDimension = new ILSize(newDims);
int incOut = newDimension.SequentialIndexDistance(dim);
int dimLen = inDim[dim];
int nrHigherDims = inDim.NumberOfElements / dimLen;
if (dim == 0) {
#region physical along 1st leading dimension
unsafe {
fixed ( byte* pOutArr = retArr)
fixed ( double* pInArr = A.GetArrayForRead()) {
double* lastElement;
byte* tmpOut = pOutArr;
double* tmpIn = pInArr;
for (int h = nrHigherDims; h-- > 0; ) {
lastElement = tmpIn + dimLen;
while (tmpIn < lastElement) {
double inVal = *(tmpIn++);
if (double.IsNaN(inVal)) continue;
tmpCount += ( /*dummy*/ (inVal) == 0.0)?0:1;
}
*tmpOut = (tmpCount == 0)? (byte)0:(byte)1; tmpCount = 0;
tmpOut++;
}
}
}
#endregion
} else {
#region physical along abitrary dimension
// sum along abitrary dimension
unsafe {
fixed ( byte* pOutArr = retArr)
fixed ( double* pInArr = A.GetArrayForRead()) {
byte* lastElementOut = newLength + pOutArr - 1;
int inLength = inDim.NumberOfElements - 1;
double* lastElementIn = pInArr + inLength;
int inc = inDim.SequentialIndexDistance(dim);
byte* tmpOut = pOutArr;
int outLength = newLength - 1;
double* leadEnd;
double* tmpIn = pInArr;
for (int h = nrHigherDims; h-- > 0; ) {
leadEnd = tmpIn + dimLen * inc;
while (tmpIn < leadEnd) {
double inVal = *(tmpIn);
tmpIn += inc;
if (double.IsNaN(inVal)) continue;
tmpCount += ( /*dummy*/ (inVal) == 0.0)?0:1; //
}
*tmpOut = (tmpCount == 0)? (byte)0:(byte)1; tmpCount = 0;
tmpOut += inc;
if (tmpOut > lastElementOut)
tmpOut = pOutArr + ((tmpOut - pOutArr) - outLength);
if (tmpIn > lastElementIn)
tmpIn = pInArr + ((tmpIn - pInArr) - inLength);
}
}
}
#endregion
}
return new ILRetLogical(retArr, newDims);
}
}
/// Determine, if any elements are nonzero
/// Input array
/// [Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).
/// Array of same size as A, having the specified or first non-singleton dimension reduced to 1, if any elements along that dimension are non-zero, '0' else.
public static ILRetLogical any (ILInArray A, int dim = -1) {
using (ILScope.Enter(A)) {
if (dim < 0)
dim = A.Size.WorkingDimension();
if (dim >= A.Size.NumberOfDimensions)
throw new ILArgumentException("dimension parameter out of range!");
if (A.IsEmpty)
return new ILRetLogical(A.Size);
if (A.IsScalar) {
return new ILRetLogical (new byte [1]{(A.GetValue(0) == 0)?(byte)0:(byte)1},1,1);
}
ILSize inDim = A.Size;
int[] newDims = inDim.ToIntArray();
int tmpCount = 0;
int newLength;
byte[] retArr;
// build ILSize
newLength = inDim.NumberOfElements / newDims[dim];
newDims[dim] = 1;
retArr = ILMemoryPool.Pool.New< byte>(newLength);
ILSize newDimension = new ILSize(newDims);
int incOut = newDimension.SequentialIndexDistance(dim);
int dimLen = inDim[dim];
int nrHigherDims = inDim.NumberOfElements / dimLen;
if (dim == 0) {
#region physical along 1st leading dimension
unsafe {
fixed ( byte* pOutArr = retArr)
fixed ( Int64* pInArr = A.GetArrayForRead()) {
Int64* lastElement;
byte* tmpOut = pOutArr;
Int64* tmpIn = pInArr;
for (int h = nrHigherDims; h-- > 0; ) {
lastElement = tmpIn + dimLen;
while (tmpIn < lastElement) {
Int64 inVal = *(tmpIn++);
tmpCount += ( /*dummy*/ (inVal) == 0)?0:1;
}
*tmpOut = (tmpCount == 0)? (byte)0:(byte)1; tmpCount = 0;
tmpOut++;
}
}
}
#endregion
} else {
#region physical along abitrary dimension
// sum along abitrary dimension
unsafe {
fixed ( byte* pOutArr = retArr)
fixed ( Int64* pInArr = A.GetArrayForRead()) {
byte* lastElementOut = newLength + pOutArr - 1;
int inLength = inDim.NumberOfElements - 1;
Int64* lastElementIn = pInArr + inLength;
int inc = inDim.SequentialIndexDistance(dim);
byte* tmpOut = pOutArr;
int outLength = newLength - 1;
Int64* leadEnd;
Int64* tmpIn = pInArr;
for (int h = nrHigherDims; h-- > 0; ) {
leadEnd = tmpIn + dimLen * inc;
while (tmpIn < leadEnd) {
Int64 inVal = *(tmpIn);
tmpIn += inc;
tmpCount += ( /*dummy*/ (inVal) == 0)?0:1; //
}
*tmpOut = (tmpCount == 0)? (byte)0:(byte)1; tmpCount = 0;
tmpOut += inc;
if (tmpOut > lastElementOut)
tmpOut = pOutArr + ((tmpOut - pOutArr) - outLength);
if (tmpIn > lastElementIn)
tmpIn = pInArr + ((tmpIn - pInArr) - inLength);
}
}
}
#endregion
}
return new ILRetLogical(retArr, newDims);
}
}
/// Determine, if any elements are nonzero
/// Input array
/// [Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).
/// Array of same size as A, having the specified or first non-singleton dimension reduced to 1, if any elements along that dimension are non-zero, '0' else.
public static ILRetLogical any (ILInArray A, int dim = -1) {
using (ILScope.Enter(A)) {
if (dim < 0)
dim = A.Size.WorkingDimension();
if (dim >= A.Size.NumberOfDimensions)
throw new ILArgumentException("dimension parameter out of range!");
if (A.IsEmpty)
return new ILRetLogical(A.Size);
if (A.IsScalar) {
return new ILRetLogical (new byte [1]{(A.GetValue(0) == 0)?(byte)0:(byte)1},1,1);
}
ILSize inDim = A.Size;
int[] newDims = inDim.ToIntArray();
int tmpCount = 0;
int newLength;
byte[] retArr;
// build ILSize
newLength = inDim.NumberOfElements / newDims[dim];
newDims[dim] = 1;
retArr = ILMemoryPool.Pool.New< byte>(newLength);
ILSize newDimension = new ILSize(newDims);
int incOut = newDimension.SequentialIndexDistance(dim);
int dimLen = inDim[dim];
int nrHigherDims = inDim.NumberOfElements / dimLen;
if (dim == 0) {
#region physical along 1st leading dimension
unsafe {
fixed ( byte* pOutArr = retArr)
fixed ( Int32* pInArr = A.GetArrayForRead()) {
Int32* lastElement;
byte* tmpOut = pOutArr;
Int32* tmpIn = pInArr;
for (int h = nrHigherDims; h-- > 0; ) {
lastElement = tmpIn + dimLen;
while (tmpIn < lastElement) {
Int32 inVal = *(tmpIn++);
tmpCount += ( /*dummy*/ (inVal) == 0)?0:1;
}
*tmpOut = (tmpCount == 0)? (byte)0:(byte)1; tmpCount = 0;
tmpOut++;
}
}
}
#endregion
} else {
#region physical along abitrary dimension
// sum along abitrary dimension
unsafe {
fixed ( byte* pOutArr = retArr)
fixed ( Int32* pInArr = A.GetArrayForRead()) {
byte* lastElementOut = newLength + pOutArr - 1;
int inLength = inDim.NumberOfElements - 1;
Int32* lastElementIn = pInArr + inLength;
int inc = inDim.SequentialIndexDistance(dim);
byte* tmpOut = pOutArr;
int outLength = newLength - 1;
Int32* leadEnd;
Int32* tmpIn = pInArr;
for (int h = nrHigherDims; h-- > 0; ) {
leadEnd = tmpIn + dimLen * inc;
while (tmpIn < leadEnd) {
Int32 inVal = *(tmpIn);
tmpIn += inc;
tmpCount += ( /*dummy*/ (inVal) == 0)?0:1; //
}
*tmpOut = (tmpCount == 0)? (byte)0:(byte)1; tmpCount = 0;
tmpOut += inc;
if (tmpOut > lastElementOut)
tmpOut = pOutArr + ((tmpOut - pOutArr) - outLength);
if (tmpIn > lastElementIn)
tmpIn = pInArr + ((tmpIn - pInArr) - inLength);
}
}
}
#endregion
}
return new ILRetLogical(retArr, newDims);
}
}
/// Determine, if any elements are nonzero
/// Input array
/// [Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).
/// Array of same size as A, having the specified or first non-singleton dimension reduced to 1, if any elements along that dimension are non-zero, '0' else.
public static ILRetLogical any (ILInArray A, int dim = -1) {
using (ILScope.Enter(A)) {
if (dim < 0)
dim = A.Size.WorkingDimension();
if (dim >= A.Size.NumberOfDimensions)
throw new ILArgumentException("dimension parameter out of range!");
if (A.IsEmpty)
return new ILRetLogical(A.Size);
if (A.IsScalar) {
return new ILRetLogical (new byte [1]{(A.GetValue(0) == 0)?(byte)0:(byte)1},1,1);
}
ILSize inDim = A.Size;
int[] newDims = inDim.ToIntArray();
int tmpCount = 0;
int newLength;
byte[] retArr;
// build ILSize
newLength = inDim.NumberOfElements / newDims[dim];
newDims[dim] = 1;
retArr = ILMemoryPool.Pool.New< byte>(newLength);
ILSize newDimension = new ILSize(newDims);
int incOut = newDimension.SequentialIndexDistance(dim);
int dimLen = inDim[dim];
int nrHigherDims = inDim.NumberOfElements / dimLen;
if (dim == 0) {
#region physical along 1st leading dimension
unsafe {
fixed ( byte* pOutArr = retArr)
fixed ( byte* pInArr = A.GetArrayForRead()) {
byte* lastElement;
byte* tmpOut = pOutArr;
byte* tmpIn = pInArr;
for (int h = nrHigherDims; h-- > 0; ) {
lastElement = tmpIn + dimLen;
while (tmpIn < lastElement) {
byte inVal = *(tmpIn++);
tmpCount += ( /*dummy*/ (inVal) == 0)?0:1;
}
*tmpOut = (tmpCount == 0)? (byte)0:(byte)1; tmpCount = 0;
tmpOut++;
}
}
}
#endregion
} else {
#region physical along abitrary dimension
// sum along abitrary dimension
unsafe {
fixed ( byte* pOutArr = retArr)
fixed ( byte* pInArr = A.GetArrayForRead()) {
byte* lastElementOut = newLength + pOutArr - 1;
int inLength = inDim.NumberOfElements - 1;
byte* lastElementIn = pInArr + inLength;
int inc = inDim.SequentialIndexDistance(dim);
byte* tmpOut = pOutArr;
int outLength = newLength - 1;
byte* leadEnd;
byte* tmpIn = pInArr;
for (int h = nrHigherDims; h-- > 0; ) {
leadEnd = tmpIn + dimLen * inc;
while (tmpIn < leadEnd) {
byte inVal = *(tmpIn);
tmpIn += inc;
tmpCount += ( /*dummy*/ (inVal) == 0)?0:1; //
}
*tmpOut = (tmpCount == 0)? (byte)0:(byte)1; tmpCount = 0;
tmpOut += inc;
if (tmpOut > lastElementOut)
tmpOut = pOutArr + ((tmpOut - pOutArr) - outLength);
if (tmpIn > lastElementIn)
tmpIn = pInArr + ((tmpIn - pInArr) - inLength);
}
}
}
#endregion
}
return new ILRetLogical(retArr, newDims);
}
}
/// Determine, if any elements are nonzero
/// Input array
/// [Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).
/// Array of same size as A, having the specified or first non-singleton dimension reduced to 1, if any elements along that dimension are non-zero, '0' else.
public static ILRetLogical any (ILInArray A, int dim = -1) {
using (ILScope.Enter(A)) {
if (dim < 0)
dim = A.Size.WorkingDimension();
if (dim >= A.Size.NumberOfDimensions)
throw new ILArgumentException("dimension parameter out of range!");
if (A.IsEmpty)
return new ILRetLogical(A.Size);
if (A.IsScalar) {
return new ILRetLogical (new byte [1]{(A.GetValue(0).iszero() || fcomplex.IsNaN(A.GetValue(0)))?(byte)1:(byte)0},1,1);
}
ILSize inDim = A.Size;
int[] newDims = inDim.ToIntArray();
int tmpCount = 0;
int newLength;
byte[] retArr;
// build ILSize
newLength = inDim.NumberOfElements / newDims[dim];
newDims[dim] = 1;
retArr = ILMemoryPool.Pool.New< byte>(newLength);
ILSize newDimension = new ILSize(newDims);
int incOut = newDimension.SequentialIndexDistance(dim);
int dimLen = inDim[dim];
int nrHigherDims = inDim.NumberOfElements / dimLen;
if (dim == 0) {
#region physical along 1st leading dimension
unsafe {
fixed ( byte* pOutArr = retArr)
fixed ( fcomplex* pInArr = A.GetArrayForRead()) {
fcomplex* lastElement;
byte* tmpOut = pOutArr;
fcomplex* tmpIn = pInArr;
for (int h = nrHigherDims; h-- > 0; ) {
lastElement = tmpIn + dimLen;
while (tmpIn < lastElement) {
fcomplex inVal = *(tmpIn++);
if (fcomplex.IsNaN(inVal)) continue;
tmpCount += ( /*dummy*/ (inVal) .iszero())?0:1;
}
*tmpOut = (tmpCount == 0)? (byte)0:(byte)1; tmpCount = 0;
tmpOut++;
}
}
}
#endregion
} else {
#region physical along abitrary dimension
// sum along abitrary dimension
unsafe {
fixed ( byte* pOutArr = retArr)
fixed ( fcomplex* pInArr = A.GetArrayForRead()) {
byte* lastElementOut = newLength + pOutArr - 1;
int inLength = inDim.NumberOfElements - 1;
fcomplex* lastElementIn = pInArr + inLength;
int inc = inDim.SequentialIndexDistance(dim);
byte* tmpOut = pOutArr;
int outLength = newLength - 1;
fcomplex* leadEnd;
fcomplex* tmpIn = pInArr;
for (int h = nrHigherDims; h-- > 0; ) {
leadEnd = tmpIn + dimLen * inc;
while (tmpIn < leadEnd) {
fcomplex inVal = *(tmpIn);
tmpIn += inc;
if (fcomplex.IsNaN(inVal)) continue;
tmpCount += ( /*dummy*/ (inVal) .iszero())?0:1; //
}
*tmpOut = (tmpCount == 0)? (byte)0:(byte)1; tmpCount = 0;
tmpOut += inc;
if (tmpOut > lastElementOut)
tmpOut = pOutArr + ((tmpOut - pOutArr) - outLength);
if (tmpIn > lastElementIn)
tmpIn = pInArr + ((tmpIn - pInArr) - inLength);
}
}
}
#endregion
}
return new ILRetLogical(retArr, newDims);
}
}
/// Determine, if any elements are nonzero
/// Input array
/// [Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).
/// Array of same size as A, having the specified or first non-singleton dimension reduced to 1, if any elements along that dimension are non-zero, '0' else.
public static ILRetLogical any (ILInArray A, int dim = -1) {
using (ILScope.Enter(A)) {
if (dim < 0)
dim = A.Size.WorkingDimension();
if (dim >= A.Size.NumberOfDimensions)
throw new ILArgumentException("dimension parameter out of range!");
if (A.IsEmpty)
return new ILRetLogical(A.Size);
if (A.IsScalar) {
return new ILRetLogical (new byte [1]{(A.GetValue(0) == 0.0f || float.IsNaN(A.GetValue(0)))?(byte)0:(byte)1},1,1);
}
ILSize inDim = A.Size;
int[] newDims = inDim.ToIntArray();
int tmpCount = 0;
int newLength;
byte[] retArr;
// build ILSize
newLength = inDim.NumberOfElements / newDims[dim];
newDims[dim] = 1;
retArr = ILMemoryPool.Pool.New< byte>(newLength);
ILSize newDimension = new ILSize(newDims);
int incOut = newDimension.SequentialIndexDistance(dim);
int dimLen = inDim[dim];
int nrHigherDims = inDim.NumberOfElements / dimLen;
if (dim == 0) {
#region physical along 1st leading dimension
unsafe {
fixed ( byte* pOutArr = retArr)
fixed ( float* pInArr = A.GetArrayForRead()) {
float* lastElement;
byte* tmpOut = pOutArr;
float* tmpIn = pInArr;
for (int h = nrHigherDims; h-- > 0; ) {
lastElement = tmpIn + dimLen;
while (tmpIn < lastElement) {
float inVal = *(tmpIn++);
if (float.IsNaN(inVal)) continue;
tmpCount += ( /*dummy*/ (inVal) == 0.0f)?0:1;
}
*tmpOut = (tmpCount == 0)? (byte)0:(byte)1; tmpCount = 0;
tmpOut++;
}
}
}
#endregion
} else {
#region physical along abitrary dimension
// sum along abitrary dimension
unsafe {
fixed ( byte* pOutArr = retArr)
fixed ( float* pInArr = A.GetArrayForRead()) {
byte* lastElementOut = newLength + pOutArr - 1;
int inLength = inDim.NumberOfElements - 1;
float* lastElementIn = pInArr + inLength;
int inc = inDim.SequentialIndexDistance(dim);
byte* tmpOut = pOutArr;
int outLength = newLength - 1;
float* leadEnd;
float* tmpIn = pInArr;
for (int h = nrHigherDims; h-- > 0; ) {
leadEnd = tmpIn + dimLen * inc;
while (tmpIn < leadEnd) {
float inVal = *(tmpIn);
tmpIn += inc;
if (float.IsNaN(inVal)) continue;
tmpCount += ( /*dummy*/ (inVal) == 0.0f)?0:1; //
}
*tmpOut = (tmpCount == 0)? (byte)0:(byte)1; tmpCount = 0;
tmpOut += inc;
if (tmpOut > lastElementOut)
tmpOut = pOutArr + ((tmpOut - pOutArr) - outLength);
if (tmpIn > lastElementIn)
tmpIn = pInArr + ((tmpIn - pInArr) - inLength);
}
}
}
#endregion
}
return new ILRetLogical(retArr, newDims);
}
}
/// Determine, if any elements are nonzero
/// Input array
/// [Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1).
/// Array of same size as A, having the specified or first non-singleton dimension reduced to 1, if any elements along that dimension are non-zero, '0' else.
public static ILRetLogical any (ILInArray A, int dim = -1) {
using (ILScope.Enter(A)) {
if (dim < 0)
dim = A.Size.WorkingDimension();
if (dim >= A.Size.NumberOfDimensions)
throw new ILArgumentException("dimension parameter out of range!");
if (A.IsEmpty)
return new ILRetLogical(A.Size);
if (A.IsScalar) {
return new ILRetLogical (new byte [1]{(A.GetValue(0).iszero() || complex.IsNaN(A.GetValue(0)))?(byte)0:(byte)1},1,1);
}
ILSize inDim = A.Size;
int[] newDims = inDim.ToIntArray();
int tmpCount = 0;
int newLength;
byte[] retArr;
// build ILSize
newLength = inDim.NumberOfElements / newDims[dim];
newDims[dim] = 1;
retArr = ILMemoryPool.Pool.New< byte>(newLength);
ILSize newDimension = new ILSize(newDims);
int incOut = newDimension.SequentialIndexDistance(dim);
int dimLen = inDim[dim];
int nrHigherDims = inDim.NumberOfElements / dimLen;
if (dim == 0) {
#region physical along 1st leading dimension
unsafe {
fixed ( byte* pOutArr = retArr)
fixed ( complex* pInArr = A.GetArrayForRead()) {
complex* lastElement;
byte* tmpOut = pOutArr;
complex* tmpIn = pInArr;
for (int h = nrHigherDims; h-- > 0; ) {
lastElement = tmpIn + dimLen;
while (tmpIn < lastElement) {
complex inVal = *(tmpIn++);
if (complex.IsNaN(inVal)) continue;
tmpCount += ( /*dummy*/ (inVal) .iszero())?0:1;
}
*tmpOut = (tmpCount == 0)? (byte)0:(byte)1; tmpCount = 0;
tmpOut++;
}
}
}
#endregion
} else {
#region physical along abitrary dimension
// sum along abitrary dimension
unsafe {
fixed ( byte* pOutArr = retArr)
fixed ( complex* pInArr = A.GetArrayForRead()) {
byte* lastElementOut = newLength + pOutArr - 1;
int inLength = inDim.NumberOfElements - 1;
complex* lastElementIn = pInArr + inLength;
int inc = inDim.SequentialIndexDistance(dim);
byte* tmpOut = pOutArr;
int outLength = newLength - 1;
complex* leadEnd;
complex* tmpIn = pInArr;
for (int h = nrHigherDims; h-- > 0; ) {
leadEnd = tmpIn + dimLen * inc;
while (tmpIn < leadEnd) {
complex inVal = *(tmpIn);
tmpIn += inc;
if (complex.IsNaN(inVal)) continue;
tmpCount += ( /*dummy*/ (inVal) .iszero())?0:1; //
}
*tmpOut = (tmpCount == 0)? (byte)0:(byte)1; tmpCount = 0;
tmpOut += inc;
if (tmpOut > lastElementOut)
tmpOut = pOutArr + ((tmpOut - pOutArr) - outLength);
if (tmpIn > lastElementIn)
tmpIn = pInArr + ((tmpIn - pInArr) - inLength);
}
}
}
#endregion
}
return new ILRetLogical(retArr, newDims);
}
}
#endregion HYCALPER AUTO GENERATED CODE
}
}