/// /// This file is part of ILNumerics Community Edition. /// /// ILNumerics Community Edition - high performance computing for applications. /// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net /// /// ILNumerics Community Edition is free software: you can redistribute it and/or modify /// it under the terms of the GNU General Public License version 3 as published by /// the Free Software Foundation. /// /// ILNumerics Community Edition is distributed in the hope that it will be useful, /// but WITHOUT ANY WARRANTY; without even the implied warranty of /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the /// GNU General Public License for more details. /// /// You should have received a copy of the GNU General Public License /// along with ILNumerics Community Edition. See the file License.txt in the root /// of your distribution package. If not, see . /// /// In addition this software uses the following components and/or licenses: /// /// ================================================================================= /// The Open Toolkit Library License /// /// Copyright (c) 2006 - 2009 the Open Toolkit library. /// /// Permission is hereby granted, free of charge, to any person obtaining a copy /// of this software and associated documentation files (the "Software"), to deal /// in the Software without restriction, including without limitation the rights to /// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of /// the Software, and to permit persons to whom the Software is furnished to do /// so, subject to the following conditions: /// /// The above copyright notice and this permission notice shall be included in all /// copies or substantial portions of the Software. /// /// ================================================================================= /// using System; using System.Collections.Generic; using System.Text; using ILNumerics.Storage; using ILNumerics.Misc; using ILNumerics.Exceptions; namespace ILNumerics { public partial class ILMath { #region HYCALPER AUTO GENERATED CODE /// Determine, if any elements are nonzero /// Input array /// [Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1). /// Array of same size as A, having the specified or first non-singleton dimension reduced to 1, if any elements along that dimension are non-zero, '0' else. public static ILRetLogical any (ILInArray A, int dim = -1) { using (ILScope.Enter(A)) { if (dim < 0) dim = A.Size.WorkingDimension(); if (dim >= A.Size.NumberOfDimensions) throw new ILArgumentException("dimension parameter out of range!"); if (A.IsEmpty) return new ILRetLogical(A.Size); if (A.IsScalar) { return new ILRetLogical (new byte [1]{(A.GetValue(0) == 0.0 || double.IsNaN(A.GetValue(0)))?(byte)0:(byte)1},1,1); } ILSize inDim = A.Size; int[] newDims = inDim.ToIntArray(); int tmpCount = 0; int newLength; byte[] retArr; // build ILSize newLength = inDim.NumberOfElements / newDims[dim]; newDims[dim] = 1; retArr = ILMemoryPool.Pool.New< byte>(newLength); ILSize newDimension = new ILSize(newDims); int incOut = newDimension.SequentialIndexDistance(dim); int dimLen = inDim[dim]; int nrHigherDims = inDim.NumberOfElements / dimLen; if (dim == 0) { #region physical along 1st leading dimension unsafe { fixed ( byte* pOutArr = retArr) fixed ( double* pInArr = A.GetArrayForRead()) { double* lastElement; byte* tmpOut = pOutArr; double* tmpIn = pInArr; for (int h = nrHigherDims; h-- > 0; ) { lastElement = tmpIn + dimLen; while (tmpIn < lastElement) { double inVal = *(tmpIn++); if (double.IsNaN(inVal)) continue; tmpCount += ( /*dummy*/ (inVal) == 0.0)?0:1; } *tmpOut = (tmpCount == 0)? (byte)0:(byte)1; tmpCount = 0; tmpOut++; } } } #endregion } else { #region physical along abitrary dimension // sum along abitrary dimension unsafe { fixed ( byte* pOutArr = retArr) fixed ( double* pInArr = A.GetArrayForRead()) { byte* lastElementOut = newLength + pOutArr - 1; int inLength = inDim.NumberOfElements - 1; double* lastElementIn = pInArr + inLength; int inc = inDim.SequentialIndexDistance(dim); byte* tmpOut = pOutArr; int outLength = newLength - 1; double* leadEnd; double* tmpIn = pInArr; for (int h = nrHigherDims; h-- > 0; ) { leadEnd = tmpIn + dimLen * inc; while (tmpIn < leadEnd) { double inVal = *(tmpIn); tmpIn += inc; if (double.IsNaN(inVal)) continue; tmpCount += ( /*dummy*/ (inVal) == 0.0)?0:1; // } *tmpOut = (tmpCount == 0)? (byte)0:(byte)1; tmpCount = 0; tmpOut += inc; if (tmpOut > lastElementOut) tmpOut = pOutArr + ((tmpOut - pOutArr) - outLength); if (tmpIn > lastElementIn) tmpIn = pInArr + ((tmpIn - pInArr) - inLength); } } } #endregion } return new ILRetLogical(retArr, newDims); } } /// Determine, if any elements are nonzero /// Input array /// [Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1). /// Array of same size as A, having the specified or first non-singleton dimension reduced to 1, if any elements along that dimension are non-zero, '0' else. public static ILRetLogical any (ILInArray A, int dim = -1) { using (ILScope.Enter(A)) { if (dim < 0) dim = A.Size.WorkingDimension(); if (dim >= A.Size.NumberOfDimensions) throw new ILArgumentException("dimension parameter out of range!"); if (A.IsEmpty) return new ILRetLogical(A.Size); if (A.IsScalar) { return new ILRetLogical (new byte [1]{(A.GetValue(0) == 0)?(byte)0:(byte)1},1,1); } ILSize inDim = A.Size; int[] newDims = inDim.ToIntArray(); int tmpCount = 0; int newLength; byte[] retArr; // build ILSize newLength = inDim.NumberOfElements / newDims[dim]; newDims[dim] = 1; retArr = ILMemoryPool.Pool.New< byte>(newLength); ILSize newDimension = new ILSize(newDims); int incOut = newDimension.SequentialIndexDistance(dim); int dimLen = inDim[dim]; int nrHigherDims = inDim.NumberOfElements / dimLen; if (dim == 0) { #region physical along 1st leading dimension unsafe { fixed ( byte* pOutArr = retArr) fixed ( Int64* pInArr = A.GetArrayForRead()) { Int64* lastElement; byte* tmpOut = pOutArr; Int64* tmpIn = pInArr; for (int h = nrHigherDims; h-- > 0; ) { lastElement = tmpIn + dimLen; while (tmpIn < lastElement) { Int64 inVal = *(tmpIn++); tmpCount += ( /*dummy*/ (inVal) == 0)?0:1; } *tmpOut = (tmpCount == 0)? (byte)0:(byte)1; tmpCount = 0; tmpOut++; } } } #endregion } else { #region physical along abitrary dimension // sum along abitrary dimension unsafe { fixed ( byte* pOutArr = retArr) fixed ( Int64* pInArr = A.GetArrayForRead()) { byte* lastElementOut = newLength + pOutArr - 1; int inLength = inDim.NumberOfElements - 1; Int64* lastElementIn = pInArr + inLength; int inc = inDim.SequentialIndexDistance(dim); byte* tmpOut = pOutArr; int outLength = newLength - 1; Int64* leadEnd; Int64* tmpIn = pInArr; for (int h = nrHigherDims; h-- > 0; ) { leadEnd = tmpIn + dimLen * inc; while (tmpIn < leadEnd) { Int64 inVal = *(tmpIn); tmpIn += inc; tmpCount += ( /*dummy*/ (inVal) == 0)?0:1; // } *tmpOut = (tmpCount == 0)? (byte)0:(byte)1; tmpCount = 0; tmpOut += inc; if (tmpOut > lastElementOut) tmpOut = pOutArr + ((tmpOut - pOutArr) - outLength); if (tmpIn > lastElementIn) tmpIn = pInArr + ((tmpIn - pInArr) - inLength); } } } #endregion } return new ILRetLogical(retArr, newDims); } } /// Determine, if any elements are nonzero /// Input array /// [Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1). /// Array of same size as A, having the specified or first non-singleton dimension reduced to 1, if any elements along that dimension are non-zero, '0' else. public static ILRetLogical any (ILInArray A, int dim = -1) { using (ILScope.Enter(A)) { if (dim < 0) dim = A.Size.WorkingDimension(); if (dim >= A.Size.NumberOfDimensions) throw new ILArgumentException("dimension parameter out of range!"); if (A.IsEmpty) return new ILRetLogical(A.Size); if (A.IsScalar) { return new ILRetLogical (new byte [1]{(A.GetValue(0) == 0)?(byte)0:(byte)1},1,1); } ILSize inDim = A.Size; int[] newDims = inDim.ToIntArray(); int tmpCount = 0; int newLength; byte[] retArr; // build ILSize newLength = inDim.NumberOfElements / newDims[dim]; newDims[dim] = 1; retArr = ILMemoryPool.Pool.New< byte>(newLength); ILSize newDimension = new ILSize(newDims); int incOut = newDimension.SequentialIndexDistance(dim); int dimLen = inDim[dim]; int nrHigherDims = inDim.NumberOfElements / dimLen; if (dim == 0) { #region physical along 1st leading dimension unsafe { fixed ( byte* pOutArr = retArr) fixed ( Int32* pInArr = A.GetArrayForRead()) { Int32* lastElement; byte* tmpOut = pOutArr; Int32* tmpIn = pInArr; for (int h = nrHigherDims; h-- > 0; ) { lastElement = tmpIn + dimLen; while (tmpIn < lastElement) { Int32 inVal = *(tmpIn++); tmpCount += ( /*dummy*/ (inVal) == 0)?0:1; } *tmpOut = (tmpCount == 0)? (byte)0:(byte)1; tmpCount = 0; tmpOut++; } } } #endregion } else { #region physical along abitrary dimension // sum along abitrary dimension unsafe { fixed ( byte* pOutArr = retArr) fixed ( Int32* pInArr = A.GetArrayForRead()) { byte* lastElementOut = newLength + pOutArr - 1; int inLength = inDim.NumberOfElements - 1; Int32* lastElementIn = pInArr + inLength; int inc = inDim.SequentialIndexDistance(dim); byte* tmpOut = pOutArr; int outLength = newLength - 1; Int32* leadEnd; Int32* tmpIn = pInArr; for (int h = nrHigherDims; h-- > 0; ) { leadEnd = tmpIn + dimLen * inc; while (tmpIn < leadEnd) { Int32 inVal = *(tmpIn); tmpIn += inc; tmpCount += ( /*dummy*/ (inVal) == 0)?0:1; // } *tmpOut = (tmpCount == 0)? (byte)0:(byte)1; tmpCount = 0; tmpOut += inc; if (tmpOut > lastElementOut) tmpOut = pOutArr + ((tmpOut - pOutArr) - outLength); if (tmpIn > lastElementIn) tmpIn = pInArr + ((tmpIn - pInArr) - inLength); } } } #endregion } return new ILRetLogical(retArr, newDims); } } /// Determine, if any elements are nonzero /// Input array /// [Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1). /// Array of same size as A, having the specified or first non-singleton dimension reduced to 1, if any elements along that dimension are non-zero, '0' else. public static ILRetLogical any (ILInArray A, int dim = -1) { using (ILScope.Enter(A)) { if (dim < 0) dim = A.Size.WorkingDimension(); if (dim >= A.Size.NumberOfDimensions) throw new ILArgumentException("dimension parameter out of range!"); if (A.IsEmpty) return new ILRetLogical(A.Size); if (A.IsScalar) { return new ILRetLogical (new byte [1]{(A.GetValue(0) == 0)?(byte)0:(byte)1},1,1); } ILSize inDim = A.Size; int[] newDims = inDim.ToIntArray(); int tmpCount = 0; int newLength; byte[] retArr; // build ILSize newLength = inDim.NumberOfElements / newDims[dim]; newDims[dim] = 1; retArr = ILMemoryPool.Pool.New< byte>(newLength); ILSize newDimension = new ILSize(newDims); int incOut = newDimension.SequentialIndexDistance(dim); int dimLen = inDim[dim]; int nrHigherDims = inDim.NumberOfElements / dimLen; if (dim == 0) { #region physical along 1st leading dimension unsafe { fixed ( byte* pOutArr = retArr) fixed ( byte* pInArr = A.GetArrayForRead()) { byte* lastElement; byte* tmpOut = pOutArr; byte* tmpIn = pInArr; for (int h = nrHigherDims; h-- > 0; ) { lastElement = tmpIn + dimLen; while (tmpIn < lastElement) { byte inVal = *(tmpIn++); tmpCount += ( /*dummy*/ (inVal) == 0)?0:1; } *tmpOut = (tmpCount == 0)? (byte)0:(byte)1; tmpCount = 0; tmpOut++; } } } #endregion } else { #region physical along abitrary dimension // sum along abitrary dimension unsafe { fixed ( byte* pOutArr = retArr) fixed ( byte* pInArr = A.GetArrayForRead()) { byte* lastElementOut = newLength + pOutArr - 1; int inLength = inDim.NumberOfElements - 1; byte* lastElementIn = pInArr + inLength; int inc = inDim.SequentialIndexDistance(dim); byte* tmpOut = pOutArr; int outLength = newLength - 1; byte* leadEnd; byte* tmpIn = pInArr; for (int h = nrHigherDims; h-- > 0; ) { leadEnd = tmpIn + dimLen * inc; while (tmpIn < leadEnd) { byte inVal = *(tmpIn); tmpIn += inc; tmpCount += ( /*dummy*/ (inVal) == 0)?0:1; // } *tmpOut = (tmpCount == 0)? (byte)0:(byte)1; tmpCount = 0; tmpOut += inc; if (tmpOut > lastElementOut) tmpOut = pOutArr + ((tmpOut - pOutArr) - outLength); if (tmpIn > lastElementIn) tmpIn = pInArr + ((tmpIn - pInArr) - inLength); } } } #endregion } return new ILRetLogical(retArr, newDims); } } /// Determine, if any elements are nonzero /// Input array /// [Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1). /// Array of same size as A, having the specified or first non-singleton dimension reduced to 1, if any elements along that dimension are non-zero, '0' else. public static ILRetLogical any (ILInArray A, int dim = -1) { using (ILScope.Enter(A)) { if (dim < 0) dim = A.Size.WorkingDimension(); if (dim >= A.Size.NumberOfDimensions) throw new ILArgumentException("dimension parameter out of range!"); if (A.IsEmpty) return new ILRetLogical(A.Size); if (A.IsScalar) { return new ILRetLogical (new byte [1]{(A.GetValue(0).iszero() || fcomplex.IsNaN(A.GetValue(0)))?(byte)1:(byte)0},1,1); } ILSize inDim = A.Size; int[] newDims = inDim.ToIntArray(); int tmpCount = 0; int newLength; byte[] retArr; // build ILSize newLength = inDim.NumberOfElements / newDims[dim]; newDims[dim] = 1; retArr = ILMemoryPool.Pool.New< byte>(newLength); ILSize newDimension = new ILSize(newDims); int incOut = newDimension.SequentialIndexDistance(dim); int dimLen = inDim[dim]; int nrHigherDims = inDim.NumberOfElements / dimLen; if (dim == 0) { #region physical along 1st leading dimension unsafe { fixed ( byte* pOutArr = retArr) fixed ( fcomplex* pInArr = A.GetArrayForRead()) { fcomplex* lastElement; byte* tmpOut = pOutArr; fcomplex* tmpIn = pInArr; for (int h = nrHigherDims; h-- > 0; ) { lastElement = tmpIn + dimLen; while (tmpIn < lastElement) { fcomplex inVal = *(tmpIn++); if (fcomplex.IsNaN(inVal)) continue; tmpCount += ( /*dummy*/ (inVal) .iszero())?0:1; } *tmpOut = (tmpCount == 0)? (byte)0:(byte)1; tmpCount = 0; tmpOut++; } } } #endregion } else { #region physical along abitrary dimension // sum along abitrary dimension unsafe { fixed ( byte* pOutArr = retArr) fixed ( fcomplex* pInArr = A.GetArrayForRead()) { byte* lastElementOut = newLength + pOutArr - 1; int inLength = inDim.NumberOfElements - 1; fcomplex* lastElementIn = pInArr + inLength; int inc = inDim.SequentialIndexDistance(dim); byte* tmpOut = pOutArr; int outLength = newLength - 1; fcomplex* leadEnd; fcomplex* tmpIn = pInArr; for (int h = nrHigherDims; h-- > 0; ) { leadEnd = tmpIn + dimLen * inc; while (tmpIn < leadEnd) { fcomplex inVal = *(tmpIn); tmpIn += inc; if (fcomplex.IsNaN(inVal)) continue; tmpCount += ( /*dummy*/ (inVal) .iszero())?0:1; // } *tmpOut = (tmpCount == 0)? (byte)0:(byte)1; tmpCount = 0; tmpOut += inc; if (tmpOut > lastElementOut) tmpOut = pOutArr + ((tmpOut - pOutArr) - outLength); if (tmpIn > lastElementIn) tmpIn = pInArr + ((tmpIn - pInArr) - inLength); } } } #endregion } return new ILRetLogical(retArr, newDims); } } /// Determine, if any elements are nonzero /// Input array /// [Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1). /// Array of same size as A, having the specified or first non-singleton dimension reduced to 1, if any elements along that dimension are non-zero, '0' else. public static ILRetLogical any (ILInArray A, int dim = -1) { using (ILScope.Enter(A)) { if (dim < 0) dim = A.Size.WorkingDimension(); if (dim >= A.Size.NumberOfDimensions) throw new ILArgumentException("dimension parameter out of range!"); if (A.IsEmpty) return new ILRetLogical(A.Size); if (A.IsScalar) { return new ILRetLogical (new byte [1]{(A.GetValue(0) == 0.0f || float.IsNaN(A.GetValue(0)))?(byte)0:(byte)1},1,1); } ILSize inDim = A.Size; int[] newDims = inDim.ToIntArray(); int tmpCount = 0; int newLength; byte[] retArr; // build ILSize newLength = inDim.NumberOfElements / newDims[dim]; newDims[dim] = 1; retArr = ILMemoryPool.Pool.New< byte>(newLength); ILSize newDimension = new ILSize(newDims); int incOut = newDimension.SequentialIndexDistance(dim); int dimLen = inDim[dim]; int nrHigherDims = inDim.NumberOfElements / dimLen; if (dim == 0) { #region physical along 1st leading dimension unsafe { fixed ( byte* pOutArr = retArr) fixed ( float* pInArr = A.GetArrayForRead()) { float* lastElement; byte* tmpOut = pOutArr; float* tmpIn = pInArr; for (int h = nrHigherDims; h-- > 0; ) { lastElement = tmpIn + dimLen; while (tmpIn < lastElement) { float inVal = *(tmpIn++); if (float.IsNaN(inVal)) continue; tmpCount += ( /*dummy*/ (inVal) == 0.0f)?0:1; } *tmpOut = (tmpCount == 0)? (byte)0:(byte)1; tmpCount = 0; tmpOut++; } } } #endregion } else { #region physical along abitrary dimension // sum along abitrary dimension unsafe { fixed ( byte* pOutArr = retArr) fixed ( float* pInArr = A.GetArrayForRead()) { byte* lastElementOut = newLength + pOutArr - 1; int inLength = inDim.NumberOfElements - 1; float* lastElementIn = pInArr + inLength; int inc = inDim.SequentialIndexDistance(dim); byte* tmpOut = pOutArr; int outLength = newLength - 1; float* leadEnd; float* tmpIn = pInArr; for (int h = nrHigherDims; h-- > 0; ) { leadEnd = tmpIn + dimLen * inc; while (tmpIn < leadEnd) { float inVal = *(tmpIn); tmpIn += inc; if (float.IsNaN(inVal)) continue; tmpCount += ( /*dummy*/ (inVal) == 0.0f)?0:1; // } *tmpOut = (tmpCount == 0)? (byte)0:(byte)1; tmpCount = 0; tmpOut += inc; if (tmpOut > lastElementOut) tmpOut = pOutArr + ((tmpOut - pOutArr) - outLength); if (tmpIn > lastElementIn) tmpIn = pInArr + ((tmpIn - pInArr) - inLength); } } } #endregion } return new ILRetLogical(retArr, newDims); } } /// Determine, if any elements are nonzero /// Input array /// [Optional] Index of the dimension to operate along. If omitted operates along the first non singleton dimension (i.e. != 1). /// Array of same size as A, having the specified or first non-singleton dimension reduced to 1, if any elements along that dimension are non-zero, '0' else. public static ILRetLogical any (ILInArray A, int dim = -1) { using (ILScope.Enter(A)) { if (dim < 0) dim = A.Size.WorkingDimension(); if (dim >= A.Size.NumberOfDimensions) throw new ILArgumentException("dimension parameter out of range!"); if (A.IsEmpty) return new ILRetLogical(A.Size); if (A.IsScalar) { return new ILRetLogical (new byte [1]{(A.GetValue(0).iszero() || complex.IsNaN(A.GetValue(0)))?(byte)0:(byte)1},1,1); } ILSize inDim = A.Size; int[] newDims = inDim.ToIntArray(); int tmpCount = 0; int newLength; byte[] retArr; // build ILSize newLength = inDim.NumberOfElements / newDims[dim]; newDims[dim] = 1; retArr = ILMemoryPool.Pool.New< byte>(newLength); ILSize newDimension = new ILSize(newDims); int incOut = newDimension.SequentialIndexDistance(dim); int dimLen = inDim[dim]; int nrHigherDims = inDim.NumberOfElements / dimLen; if (dim == 0) { #region physical along 1st leading dimension unsafe { fixed ( byte* pOutArr = retArr) fixed ( complex* pInArr = A.GetArrayForRead()) { complex* lastElement; byte* tmpOut = pOutArr; complex* tmpIn = pInArr; for (int h = nrHigherDims; h-- > 0; ) { lastElement = tmpIn + dimLen; while (tmpIn < lastElement) { complex inVal = *(tmpIn++); if (complex.IsNaN(inVal)) continue; tmpCount += ( /*dummy*/ (inVal) .iszero())?0:1; } *tmpOut = (tmpCount == 0)? (byte)0:(byte)1; tmpCount = 0; tmpOut++; } } } #endregion } else { #region physical along abitrary dimension // sum along abitrary dimension unsafe { fixed ( byte* pOutArr = retArr) fixed ( complex* pInArr = A.GetArrayForRead()) { byte* lastElementOut = newLength + pOutArr - 1; int inLength = inDim.NumberOfElements - 1; complex* lastElementIn = pInArr + inLength; int inc = inDim.SequentialIndexDistance(dim); byte* tmpOut = pOutArr; int outLength = newLength - 1; complex* leadEnd; complex* tmpIn = pInArr; for (int h = nrHigherDims; h-- > 0; ) { leadEnd = tmpIn + dimLen * inc; while (tmpIn < leadEnd) { complex inVal = *(tmpIn); tmpIn += inc; if (complex.IsNaN(inVal)) continue; tmpCount += ( /*dummy*/ (inVal) .iszero())?0:1; // } *tmpOut = (tmpCount == 0)? (byte)0:(byte)1; tmpCount = 0; tmpOut += inc; if (tmpOut > lastElementOut) tmpOut = pOutArr + ((tmpOut - pOutArr) - outLength); if (tmpIn > lastElementIn) tmpIn = pInArr + ((tmpIn - pInArr) - inLength); } } } #endregion } return new ILRetLogical(retArr, newDims); } } #endregion HYCALPER AUTO GENERATED CODE } }