/// /// This file is part of ILNumerics Community Edition. /// /// ILNumerics Community Edition - high performance computing for applications. /// Copyright (C) 2006 - 2012 Haymo Kutschbach, http://ilnumerics.net /// /// ILNumerics Community Edition is free software: you can redistribute it and/or modify /// it under the terms of the GNU General Public License version 3 as published by /// the Free Software Foundation. /// /// ILNumerics Community Edition is distributed in the hope that it will be useful, /// but WITHOUT ANY WARRANTY; without even the implied warranty of /// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the /// GNU General Public License for more details. /// /// You should have received a copy of the GNU General Public License /// along with ILNumerics Community Edition. See the file License.txt in the root /// of your distribution package. If not, see . /// /// In addition this software uses the following components and/or licenses: /// /// ================================================================================= /// The Open Toolkit Library License /// /// Copyright (c) 2006 - 2009 the Open Toolkit library. /// /// Permission is hereby granted, free of charge, to any person obtaining a copy /// of this software and associated documentation files (the "Software"), to deal /// in the Software without restriction, including without limitation the rights to /// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of /// the Software, and to permit persons to whom the Software is furnished to do /// so, subject to the following conditions: /// /// The above copyright notice and this permission notice shall be included in all /// copies or substantial portions of the Software. /// /// ================================================================================= /// using System; using ILNumerics; using ILNumerics.Misc; using ILNumerics.Storage; using ILNumerics.Native; using ILNumerics.Exceptions; namespace ILNumerics { public partial class ILMath { #region HYCALPER AUTO GENERATED CODE /// Divide elements /// Input array A /// Input array B /// Array with elementwise division of A and B /// On empty input an empty array will be returned. /// A and/or B may be scalar. The scalar value will be applied on all elements of the /// other array. /// If A or B is a colum vector and the other parameter is an array with a matching colum length, the vector is used to operate on all columns of the array. /// Similar, if one parameter is a row vector, it is used to operate along the rows of the other array if its number of columns matches the vector length. This feature /// can be used to replace the (costly) repmat function for most binary operators. /// For all other cases the dimensions of A and B must match. /// If the size of both arrays does not match any parameter rule. public unsafe static ILRetArray divide(ILInArray A, ILInArray B) { using (ILScope.Enter(A,B)) { int outLen; BinOpItMode mode; Int64 [] retArr; Int64 [] arrA = A.GetArrayForRead(); Int64[] arrB = B.GetArrayForRead(); ILSize outDims; #region determine operation mode if (A.IsScalar) { outDims = B.Size; if (B.IsScalar) { return new ILRetArray (new Int64 [1]{ saturateInt64 (A.GetValue(0) / (double) B.GetValue(0))}, A.Size); } else if (B.IsEmpty) { return ILRetArray.empty(outDims); } else { outLen = outDims.NumberOfElements; if (!B.TryGetStorage4InplaceOp(out retArr)) { retArr = ILMemoryPool.Pool.New< Int64 > (outLen); mode = BinOpItMode.SAN; } else { mode = BinOpItMode.SAI; } } } else { outDims = A.Size; if (B.IsScalar) { if (A.IsEmpty) { return ILRetArray.empty(A.Size); } outLen = A.S.NumberOfElements; if (!A.TryGetStorage4InplaceOp(out retArr)) { retArr = ILMemoryPool.Pool.New< Int64 > (outLen); mode = BinOpItMode.ASN; } else { mode = BinOpItMode.ASI; } } else { // array + array if (!A.Size.IsSameSize(B.Size)) { return divideEx(A,B); } outLen = A.S.NumberOfElements; if (A.TryGetStorage4InplaceOp(out retArr)) mode = BinOpItMode.AAIA; else if (B.TryGetStorage4InplaceOp(out retArr)) mode = BinOpItMode.AAIB; else { retArr = ILMemoryPool.Pool.New< Int64 > (outLen); mode = BinOpItMode.AAN; } } } #endregion ILDenseStorage retStorage = new ILDenseStorage(retArr, outDims); int i = 0, workerCount = 1; Action worker = data => { Tuple range = (Tuple)data; Int64* cp = (Int64*)range.Item5 + range.Item1; Int64 scalar; int j = range.Item2; #region loops switch (mode) { case BinOpItMode.AAIA: Int64* bp = ((Int64*)range.Item4 + range.Item1); while (j > 20) { cp[0] = saturateInt64 (cp[0] / (double) bp[0]); cp[1] = saturateInt64 (cp[1] / (double) bp[1]); cp[2] = saturateInt64 (cp[2] / (double) bp[2]); cp[3] = saturateInt64 (cp[3] / (double) bp[3]); cp[4] = saturateInt64 (cp[4] / (double) bp[4]); cp[5] = saturateInt64 (cp[5] / (double) bp[5]); cp[6] = saturateInt64 (cp[6] / (double) bp[6]); cp[7] = saturateInt64 (cp[7] / (double) bp[7]); cp[8] = saturateInt64 (cp[8] / (double) bp[8]); cp[9] = saturateInt64 (cp[9] / (double) bp[9]); cp[10] = saturateInt64 (cp[10] / (double) bp[10]); cp[11] = saturateInt64 (cp[11] / (double) bp[11]); cp[12] = saturateInt64 (cp[12] / (double) bp[12]); cp[13] = saturateInt64 (cp[13] / (double) bp[13]); cp[14] = saturateInt64 (cp[14] / (double) bp[14]); cp[15] = saturateInt64 (cp[15] / (double) bp[15]); cp[16] = saturateInt64 (cp[16] / (double) bp[16]); cp[17] = saturateInt64 (cp[17] / (double) bp[17]); cp[18] = saturateInt64 (cp[18] / (double) bp[18]); cp[19] = saturateInt64 (cp[19] / (double) bp[19]); cp[20] = saturateInt64 (cp[20] / (double) bp[20]); cp += 21; bp += 21; j -= 21; } while (j --> 0) { *cp = saturateInt64 (*cp / (double) *bp); cp++; bp++; } break; case BinOpItMode.AAIB: Int64* ap = ((Int64*)range.Item3 + range.Item1); while (j > 20) { cp[0] = saturateInt64 (ap[0] / (double) cp[0]); cp[1] = saturateInt64 (ap[1] / (double) cp[1]); cp[2] = saturateInt64 (ap[2] / (double) cp[2]); cp[3] = saturateInt64 (ap[3] / (double) cp[3]); cp[4] = saturateInt64 (ap[4] / (double) cp[4]); cp[5] = saturateInt64 (ap[5] / (double) cp[5]); cp[6] = saturateInt64 (ap[6] / (double) cp[6]); cp[7] = saturateInt64 (ap[7] / (double) cp[7]); cp[8] = saturateInt64 (ap[8] / (double) cp[8]); cp[9] = saturateInt64 (ap[9] / (double) cp[9]); cp[10] = saturateInt64 (ap[10] / (double) cp[10]); cp[11] = saturateInt64 (ap[11] / (double) cp[11]); cp[12] = saturateInt64 (ap[12] / (double) cp[12]); cp[13] = saturateInt64 (ap[13] / (double) cp[13]); cp[14] = saturateInt64 (ap[14] / (double) cp[14]); cp[15] = saturateInt64 (ap[15] / (double) cp[15]); cp[16] = saturateInt64 (ap[16] / (double) cp[16]); cp[17] = saturateInt64 (ap[17] / (double) cp[17]); cp[18] = saturateInt64 (ap[18] / (double) cp[18]); cp[19] = saturateInt64 (ap[19] / (double) cp[19]); cp[20] = saturateInt64 (ap[20] / (double) cp[20]); ap += 21; cp += 21; j -= 21; } while (j --> 0) { *cp = saturateInt64 (*ap / (double) *cp); ap++; cp++; } break; case BinOpItMode.AAN: ap = ((Int64*)range.Item3 + range.Item1); bp = ((Int64*)range.Item4 + range.Item1); while (j > 20) { cp[0] = saturateInt64 (ap[0] / (double) bp[0]); cp[1] = saturateInt64 (ap[1] / (double) bp[1]); cp[2] = saturateInt64 (ap[2] / (double) bp[2]); cp[3] = saturateInt64 (ap[3] / (double) bp[3]); cp[4] = saturateInt64 (ap[4] / (double) bp[4]); cp[5] = saturateInt64 (ap[5] / (double) bp[5]); cp[6] = saturateInt64 (ap[6] / (double) bp[6]); cp[7] = saturateInt64 (ap[7] / (double) bp[7]); cp[8] = saturateInt64 (ap[8] / (double) bp[8]); cp[9] = saturateInt64 (ap[9] / (double) bp[9]); cp[10] = saturateInt64 (ap[10] / (double) bp[10]); cp[11] = saturateInt64 (ap[11] / (double) bp[11]); cp[12] = saturateInt64 (ap[12] / (double) bp[12]); cp[13] = saturateInt64 (ap[13] / (double) bp[13]); cp[14] = saturateInt64 (ap[14] / (double) bp[14]); cp[15] = saturateInt64 (ap[15] / (double) bp[15]); cp[16] = saturateInt64 (ap[16] / (double) bp[16]); cp[17] = saturateInt64 (ap[17] / (double) bp[17]); cp[18] = saturateInt64 (ap[18] / (double) bp[18]); cp[19] = saturateInt64 (ap[19] / (double) bp[19]); cp[20] = saturateInt64 (ap[20] / (double) bp[20]); ap+=21; bp+=21; cp+=21; j-=21; } while (j --> 0) { *cp = saturateInt64 (*ap / (double) *bp); ap++; bp++; cp++; } break; case BinOpItMode.ASI: scalar = *((Int64*)range.Item4); while (j > 20) { cp[0] = saturateInt64 (cp[0] / (double) scalar); cp[1] = saturateInt64 (cp[1] / (double) scalar); cp[2] = saturateInt64 (cp[2] / (double) scalar); cp[3] = saturateInt64 (cp[3] / (double) scalar); cp[4] = saturateInt64 (cp[4] / (double) scalar); cp[5] = saturateInt64 (cp[5] / (double) scalar); cp[6] = saturateInt64 (cp[6] / (double) scalar); cp[7] = saturateInt64 (cp[7] / (double) scalar); cp[8] = saturateInt64 (cp[8] / (double) scalar); cp[9] = saturateInt64 (cp[9] / (double) scalar); cp[10] = saturateInt64 (cp[10] / (double) scalar); cp[11] = saturateInt64 (cp[11] / (double) scalar); cp[12] = saturateInt64 (cp[12] / (double) scalar); cp[13] = saturateInt64 (cp[13] / (double) scalar); cp[14] = saturateInt64 (cp[14] / (double) scalar); cp[15] = saturateInt64 (cp[15] / (double) scalar); cp[16] = saturateInt64 (cp[16] / (double) scalar); cp[17] = saturateInt64 (cp[17] / (double) scalar); cp[18] = saturateInt64 (cp[18] / (double) scalar); cp[19] = saturateInt64 (cp[19] / (double) scalar); cp[20] = saturateInt64 (cp[20] / (double) scalar); cp += 21; j -= 21; } while (j --> 0) { *cp = saturateInt64 (*cp / (double) scalar); cp++; } break; case BinOpItMode.ASN: ap = ((Int64*)range.Item3 + range.Item1); scalar = *((Int64*)range.Item4); while (j > 20) { cp[0] = saturateInt64 (ap[0] / (double) scalar); cp[1] = saturateInt64 (ap[1] / (double) scalar); cp[2] = saturateInt64 (ap[2] / (double) scalar); cp[3] = saturateInt64 (ap[3] / (double) scalar); cp[4] = saturateInt64 (ap[4] / (double) scalar); cp[5] = saturateInt64 (ap[5] / (double) scalar); cp[6] = saturateInt64 (ap[6] / (double) scalar); cp[7] = saturateInt64 (ap[7] / (double) scalar); cp[8] = saturateInt64 (ap[8] / (double) scalar); cp[9] = saturateInt64 (ap[9] / (double) scalar); cp[10] = saturateInt64 (ap[10] / (double) scalar); cp[11] = saturateInt64 (ap[11] / (double) scalar); cp[12] = saturateInt64 (ap[12] / (double) scalar); cp[13] = saturateInt64 (ap[13] / (double) scalar); cp[14] = saturateInt64 (ap[14] / (double) scalar); cp[15] = saturateInt64 (ap[15] / (double) scalar); cp[16] = saturateInt64 (ap[16] / (double) scalar); cp[17] = saturateInt64 (ap[17] / (double) scalar); cp[18] = saturateInt64 (ap[18] / (double) scalar); cp[19] = saturateInt64 (ap[19] / (double) scalar); cp[20] = saturateInt64 (ap[20] / (double) scalar); ap+=21; cp+=21; j -= 21; } while (j --> 0) { *cp = saturateInt64 (*ap / (double) scalar); ap++; cp++; } break; case BinOpItMode.SAI: scalar = *((Int64*)range.Item3); while (j > 20) { cp[0] = saturateInt64 (scalar / (double) cp[0]); cp[1] = saturateInt64 (scalar / (double) cp[1]); cp[2] = saturateInt64 (scalar / (double) cp[2]); cp[3] = saturateInt64 (scalar / (double) cp[3]); cp[4] = saturateInt64 (scalar / (double) cp[4]); cp[5] = saturateInt64 (scalar / (double) cp[5]); cp[6] = saturateInt64 (scalar / (double) cp[6]); cp[7] = saturateInt64 (scalar / (double) cp[7]); cp[8] = saturateInt64 (scalar / (double) cp[8]); cp[9] = saturateInt64 (scalar / (double) cp[9]); cp[10] = saturateInt64 (scalar / (double) cp[10]); cp[11] = saturateInt64 (scalar / (double) cp[11]); cp[12] = saturateInt64 (scalar / (double) cp[12]); cp[13] = saturateInt64 (scalar / (double) cp[13]); cp[14] = saturateInt64 (scalar / (double) cp[14]); cp[15] = saturateInt64 (scalar / (double) cp[15]); cp[16] = saturateInt64 (scalar / (double) cp[16]); cp[17] = saturateInt64 (scalar / (double) cp[17]); cp[18] = saturateInt64 (scalar / (double) cp[18]); cp[19] = saturateInt64 (scalar / (double) cp[19]); cp[20] = saturateInt64 (scalar / (double) cp[20]); cp += 21; j -= 21; } while (j --> 0) { *cp = saturateInt64 (scalar / (double) *cp); cp++; } break; case BinOpItMode.SAN: scalar = *((Int64*)range.Item3); bp = ((Int64*)range.Item4 + range.Item1); while (j > 20) { cp[0] = saturateInt64 (scalar / (double) bp[0]); cp[1] = saturateInt64 (scalar / (double) bp[1]); cp[2] = saturateInt64 (scalar / (double) bp[2]); cp[3] = saturateInt64 (scalar / (double) bp[3]); cp[4] = saturateInt64 (scalar / (double) bp[4]); cp[5] = saturateInt64 (scalar / (double) bp[5]); cp[6] = saturateInt64 (scalar / (double) bp[6]); cp[7] = saturateInt64 (scalar / (double) bp[7]); cp[8] = saturateInt64 (scalar / (double) bp[8]); cp[9] = saturateInt64 (scalar / (double) bp[9]); cp[10] = saturateInt64 (scalar / (double) bp[10]); cp[11] = saturateInt64 (scalar / (double) bp[11]); cp[12] = saturateInt64 (scalar / (double) bp[12]); cp[13] = saturateInt64 (scalar / (double) bp[13]); cp[14] = saturateInt64 (scalar / (double) bp[14]); cp[15] = saturateInt64 (scalar / (double) bp[15]); cp[16] = saturateInt64 (scalar / (double) bp[16]); cp[17] = saturateInt64 (scalar / (double) bp[17]); cp[18] = saturateInt64 (scalar / (double) bp[18]); cp[19] = saturateInt64 (scalar / (double) bp[19]); cp[20] = saturateInt64 (scalar / (double) bp[20]); bp+=21; cp+=21; j -= 21; } while (j --> 0) { *cp = saturateInt64 (scalar / (double) *bp); bp++; cp++; } break; default: break; } #endregion System.Threading.Interlocked.Decrement(ref workerCount); //retStorage.PendingEvents.Signal(); }; #region do the work int workItemCount = Settings.s_maxNumberThreads, workItemLength; if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) { if (outLen / workItemCount > Settings.s_minParallelElement1Count) { workItemLength = outLen / workItemCount; //workItemLength = (int)((double)outLen / workItemCount * 1.05); } else { workItemLength = outLen / 2; workItemCount = 2; } } else { workItemLength = outLen; workItemCount = 1; } fixed ( Int64* arrAP = arrA) fixed ( Int64* arrBP = arrB) fixed ( Int64* retArrP = retArr) { for (; i < workItemCount - 1; i++) { Tuple range = new Tuple (i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode); System.Threading.Interlocked.Increment(ref workerCount); ILThreadPool.QueueUserWorkItem(i, worker, range); } // the last (or may the only) chunk is done right here //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks); worker(new Tuple (i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode)); ILThreadPool.Wait4Workers(ref workerCount); } #endregion return new ILRetArray< Int64>(retStorage); } } private static unsafe ILRetArray divideEx(ILInArray A, ILInArray B) { //using (ILScope.Enter(A, B)) { we cannot start a new scope here, since this would prevent A and B to be used implace if applicable #region parameter checking if (isnull(A) || isnull(B)) return empty(ILSize.Empty00); if (A.IsEmpty) { return empty(B.S); } else if (B.IsEmpty) { return empty(A.S); } //if (A.IsScalar || B.IsScalar || A.D.IsSameSize(B.D)) // return add(A,B); int dim = -1; for (int l = 0; l < Math.Max(A.S.NumberOfDimensions, B.S.NumberOfDimensions); l++) { if (A.S[l] != B.S[l]) { if (dim >= 0 || (A.S[l] != 1 && B.S[l] != 1)) { throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B"); } dim = l; } } if (dim > 1) throw new ILArgumentException("singleton dimension expansion currently is only supported for colum- and row vectors"); dim = -(dim - 1); // 0 -> 1, 1 -> 0 #endregion #region parameter preparation Int64[] retArr; Int64[] arrA = A.GetArrayForRead(); Int64[] arrB = B.GetArrayForRead(); ILSize outDims; BinOptItExMode mode; int workItemMultiplierLenA; int workItemMultiplierLenB; if (A.IsVector) { outDims = B.S; if (!B.TryGetStorage4InplaceOp(out retArr)) { retArr = ILMemoryPool.Pool.New(outDims.NumberOfElements); mode = BinOptItExMode.VAN; } else { mode = BinOptItExMode.VAI; } workItemMultiplierLenB = outDims[0]; workItemMultiplierLenA = dim; // 0 for column, 1 for row vector } else if (B.IsVector) { outDims = A.S; if (!A.TryGetStorage4InplaceOp(out retArr)) { retArr = ILMemoryPool.Pool.New(outDims.NumberOfElements); mode = BinOptItExMode.AVN; } else { mode = BinOptItExMode.AVI; } workItemMultiplierLenB = dim; // 0 for column, 1 for row vector workItemMultiplierLenA = outDims[0]; } else { throw new ILArgumentException("A and B must have the same size except for one singleton dimension in either A or B"); } int itLen = outDims[0]; // (dim == 0) ? outDims.SequentialIndexDistance(1) : outDims.SequentialIndexDistance(0); #endregion #region worker loops definition ILDenseStorage retStorage = new ILDenseStorage(retArr, outDims); int workerCount = 1; Action worker = data => { // expects: iStart, iLen, ap, bp, cp Tuple range = (Tuple)data; Int64* ap; Int64* bp; Int64* cp; switch (mode) { case BinOptItExMode.VAN: if (dim == 0) { bp = (Int64*)range.Item3; cp = (Int64*)range.Item4; for (int s = 0; s < range.Item1; s++) { ap = (Int64*)range.Item2; int l = itLen; while (l > 10) { cp[0] = saturateInt64 (ap[0] / (double) bp[0]); cp[1] = saturateInt64 (ap[1] / (double) bp[1]); cp[2] = saturateInt64 (ap[2] / (double) bp[2]); cp[3] = saturateInt64 (ap[3] / (double) bp[3]); cp[4] = saturateInt64 (ap[4] / (double) bp[4]); cp[5] = saturateInt64 (ap[5] / (double) bp[5]); cp[6] = saturateInt64 (ap[6] / (double) bp[6]); cp[7] = saturateInt64 (ap[7] / (double) bp[7]); cp[8] = saturateInt64 (ap[8] / (double) bp[8]); cp[9] = saturateInt64 (ap[9] / (double) bp[9]); cp[10] = saturateInt64 (ap[10] / (double) bp[10]); ap += 11; bp += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp++ = saturateInt64 (*ap++ / (double) *bp++); } } } else { // dim == 1 ap = (Int64*)range.Item2; bp = (Int64*)range.Item3; cp = (Int64*)range.Item4; for (int s = 0; s < range.Item1; s++) { Int64 val = *ap++; int l = itLen; while (l > 10) { cp[0] = saturateInt64 (val / (double) bp[0]); cp[1] = saturateInt64 (val / (double) bp[1]); cp[2] = saturateInt64 (val / (double) bp[2]); cp[3] = saturateInt64 (val / (double) bp[3]); cp[4] = saturateInt64 (val / (double) bp[4]); cp[5] = saturateInt64 (val / (double) bp[5]); cp[6] = saturateInt64 (val / (double) bp[6]); cp[7] = saturateInt64 (val / (double) bp[7]); cp[8] = saturateInt64 (val / (double) bp[8]); cp[9] = saturateInt64 (val / (double) bp[9]); cp[10] = saturateInt64 (val / (double) bp[10]); bp += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp++ = saturateInt64 (val / (double) *bp++); } } } break; case BinOptItExMode.VAI: if (dim == 0) { cp = (Int64*)range.Item4; for (int s = 0; s < range.Item1; s++) { ap = (Int64*)range.Item2; int l = itLen; while (l > 10) { cp[0] = saturateInt64 (ap[0] / (double) cp[0]); cp[1] = saturateInt64 (ap[1] / (double) cp[1]); cp[2] = saturateInt64 (ap[2] / (double) cp[2]); cp[3] = saturateInt64 (ap[3] / (double) cp[3]); cp[4] = saturateInt64 (ap[4] / (double) cp[4]); cp[5] = saturateInt64 (ap[5] / (double) cp[5]); cp[6] = saturateInt64 (ap[6] / (double) cp[6]); cp[7] = saturateInt64 (ap[7] / (double) cp[7]); cp[8] = saturateInt64 (ap[8] / (double) cp[8]); cp[9] = saturateInt64 (ap[9] / (double) cp[9]); cp[10] = saturateInt64 (ap[10] / (double) cp[10]); ap += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp = saturateInt64 (*ap++ / (double) *cp); cp++; } } } else { // dim == 1 cp = (Int64*)range.Item4; ap = (Int64*)range.Item2; for (int s = 0; s < range.Item1; s++) { Int64 val = *ap++; int l = itLen; while (l > 10) { cp[0] = saturateInt64 (val / (double) cp[0]); cp[1] = saturateInt64 (val / (double) cp[1]); cp[2] = saturateInt64 (val / (double) cp[2]); cp[3] = saturateInt64 (val / (double) cp[3]); cp[4] = saturateInt64 (val / (double) cp[4]); cp[5] = saturateInt64 (val / (double) cp[5]); cp[6] = saturateInt64 (val / (double) cp[6]); cp[7] = saturateInt64 (val / (double) cp[7]); cp[8] = saturateInt64 (val / (double) cp[8]); cp[9] = saturateInt64 (val / (double) cp[9]); cp[10] = saturateInt64 (val / (double) cp[10]); cp += 11; l -= 11; } while (l-- > 0) { *cp = saturateInt64 (val / (double) *cp); cp++; } } } break; case BinOptItExMode.AVN: if (dim == 0) { ap = (Int64*)range.Item2; cp = (Int64*)range.Item4; for (int s = 0; s < range.Item1; s++) { bp = (Int64*)range.Item3; int l = itLen; while (l > 10) { cp[0] = saturateInt64 (ap[0] / (double) bp[0]); cp[1] = saturateInt64 (ap[1] / (double) bp[1]); cp[2] = saturateInt64 (ap[2] / (double) bp[2]); cp[3] = saturateInt64 (ap[3] / (double) bp[3]); cp[4] = saturateInt64 (ap[4] / (double) bp[4]); cp[5] = saturateInt64 (ap[5] / (double) bp[5]); cp[6] = saturateInt64 (ap[6] / (double) bp[6]); cp[7] = saturateInt64 (ap[7] / (double) bp[7]); cp[8] = saturateInt64 (ap[8] / (double) bp[8]); cp[9] = saturateInt64 (ap[9] / (double) bp[9]); cp[10] = saturateInt64 (ap[10] / (double) bp[10]); ap += 11; bp += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp = saturateInt64 (*ap / (double) *bp); ap++; bp++; cp++; } } } else { // dim = 1 ap = (Int64*)range.Item2; bp = (Int64*)range.Item3; cp = (Int64*)range.Item4; for (int s = 0; s < range.Item1; s++) { Int64 val = *bp++; int l = itLen; while (l > 10) { cp[0] = saturateInt64 (ap[0] / (double) val); cp[1] = saturateInt64 (ap[1] / (double) val); cp[2] = saturateInt64 (ap[2] / (double) val); cp[3] = saturateInt64 (ap[3] / (double) val); cp[4] = saturateInt64 (ap[4] / (double) val); cp[5] = saturateInt64 (ap[5] / (double) val); cp[6] = saturateInt64 (ap[6] / (double) val); cp[7] = saturateInt64 (ap[7] / (double) val); cp[8] = saturateInt64 (ap[8] / (double) val); cp[9] = saturateInt64 (ap[9] / (double) val); cp[10] = saturateInt64 (ap[10] / (double) val); ap += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp = saturateInt64 (*ap / (double) val); ap++; cp++; } } } break; case BinOptItExMode.AVI: if (dim == 0) { cp = (Int64*)range.Item4; for (int s = 0; s < range.Item1; s++) { bp = (Int64*)range.Item3; int l = itLen; while (l > 10) { cp[0] = saturateInt64 (cp[0] / (double) bp[0]); cp[1] = saturateInt64 (cp[1] / (double) bp[1]); cp[2] = saturateInt64 (cp[2] / (double) bp[2]); cp[3] = saturateInt64 (cp[3] / (double) bp[3]); cp[4] = saturateInt64 (cp[4] / (double) bp[4]); cp[5] = saturateInt64 (cp[5] / (double) bp[5]); cp[6] = saturateInt64 (cp[6] / (double) bp[6]); cp[7] = saturateInt64 (cp[7] / (double) bp[7]); cp[8] = saturateInt64 (cp[8] / (double) bp[8]); cp[9] = saturateInt64 (cp[9] / (double) bp[9]); cp[10] = saturateInt64 (cp[10] / (double) bp[10]); bp += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp = saturateInt64 (*cp / (double) *bp); bp++; cp++; } } } else { // dim = 1 bp = (Int64*)range.Item3; cp = (Int64*)range.Item4; for (int s = 0; s < range.Item1; s++) { Int64 val = *bp++; int l = itLen; while (l > 10) { cp[0] = saturateInt64 (cp[0] / (double) val); cp[1] = saturateInt64 (cp[1] / (double) val); cp[2] = saturateInt64 (cp[2] / (double) val); cp[3] = saturateInt64 (cp[3] / (double) val); cp[4] = saturateInt64 (cp[4] / (double) val); cp[5] = saturateInt64 (cp[5] / (double) val); cp[6] = saturateInt64 (cp[6] / (double) val); cp[7] = saturateInt64 (cp[7] / (double) val); cp[8] = saturateInt64 (cp[8] / (double) val); cp[9] = saturateInt64 (cp[9] / (double) val); cp[10] = saturateInt64 (cp[10] / (double) val); cp += 11; l -= 11; } while (l --> 0) { *cp = saturateInt64 (*cp / (double) val); cp++; } } } break; } System.Threading.Interlocked.Decrement(ref workerCount); }; #endregion #region work distribution int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength; if (Settings.s_maxNumberThreads > 1 && outDims.NumberOfElements >= Settings.s_minParallelElement1Count && outDims[1] > 1) { if (outDims[1] > workItemCount) { workItemLength = outDims[1] / workItemCount; } else { workItemLength = outDims[1] / 2; workItemCount = 2; } } else { workItemLength = outDims[1]; workItemCount = 1; } fixed ( Int64* arrAP = arrA) fixed ( Int64* arrBP = arrB) fixed ( Int64* retArrP = retArr) { for (; i < workItemCount - 1; i++) { Tuple range = new Tuple (workItemLength , (IntPtr)(arrAP + i * workItemMultiplierLenA * workItemLength) , (IntPtr)(arrBP + i * workItemMultiplierLenB * workItemLength) , (IntPtr)(retArrP + i * outDims[0] * workItemLength)); System.Threading.Interlocked.Increment(ref workerCount); ILThreadPool.QueueUserWorkItem(i, worker, range); } // the last (or may the only) chunk is done right here //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks); worker(new Tuple (outDims[1] - i * workItemLength , (IntPtr)(arrAP + i * workItemMultiplierLenA * workItemLength) , (IntPtr)(arrBP + i * workItemMultiplierLenB * workItemLength) , (IntPtr)(retArrP + i * outDims[0] * workItemLength))); ILThreadPool.Wait4Workers(ref workerCount); } #endregion return new ILRetArray(retStorage); //} // no scopes here! it disables implace operations } /// Divide elements /// Input array A /// Input array B /// Array with elementwise division of A and B /// On empty input an empty array will be returned. /// A and/or B may be scalar. The scalar value will be applied on all elements of the /// other array. /// If A or B is a colum vector and the other parameter is an array with a matching colum length, the vector is used to operate on all columns of the array. /// Similar, if one parameter is a row vector, it is used to operate along the rows of the other array if its number of columns matches the vector length. This feature /// can be used to replace the (costly) repmat function for most binary operators. /// For all other cases the dimensions of A and B must match. /// If the size of both arrays does not match any parameter rule. public unsafe static ILRetArray divide(ILInArray A, ILInArray B) { using (ILScope.Enter(A,B)) { int outLen; BinOpItMode mode; Int32 [] retArr; Int32 [] arrA = A.GetArrayForRead(); Int32[] arrB = B.GetArrayForRead(); ILSize outDims; #region determine operation mode if (A.IsScalar) { outDims = B.Size; if (B.IsScalar) { return new ILRetArray (new Int32 [1]{ saturateInt32 (A.GetValue(0) / (double) B.GetValue(0))}, A.Size); } else if (B.IsEmpty) { return ILRetArray.empty(outDims); } else { outLen = outDims.NumberOfElements; if (!B.TryGetStorage4InplaceOp(out retArr)) { retArr = ILMemoryPool.Pool.New< Int32 > (outLen); mode = BinOpItMode.SAN; } else { mode = BinOpItMode.SAI; } } } else { outDims = A.Size; if (B.IsScalar) { if (A.IsEmpty) { return ILRetArray.empty(A.Size); } outLen = A.S.NumberOfElements; if (!A.TryGetStorage4InplaceOp(out retArr)) { retArr = ILMemoryPool.Pool.New< Int32 > (outLen); mode = BinOpItMode.ASN; } else { mode = BinOpItMode.ASI; } } else { // array + array if (!A.Size.IsSameSize(B.Size)) { return divideEx(A,B); } outLen = A.S.NumberOfElements; if (A.TryGetStorage4InplaceOp(out retArr)) mode = BinOpItMode.AAIA; else if (B.TryGetStorage4InplaceOp(out retArr)) mode = BinOpItMode.AAIB; else { retArr = ILMemoryPool.Pool.New< Int32 > (outLen); mode = BinOpItMode.AAN; } } } #endregion ILDenseStorage retStorage = new ILDenseStorage(retArr, outDims); int i = 0, workerCount = 1; Action worker = data => { Tuple range = (Tuple)data; Int32* cp = (Int32*)range.Item5 + range.Item1; Int32 scalar; int j = range.Item2; #region loops switch (mode) { case BinOpItMode.AAIA: Int32* bp = ((Int32*)range.Item4 + range.Item1); while (j > 20) { cp[0] = saturateInt32 (cp[0] / (double) bp[0]); cp[1] = saturateInt32 (cp[1] / (double) bp[1]); cp[2] = saturateInt32 (cp[2] / (double) bp[2]); cp[3] = saturateInt32 (cp[3] / (double) bp[3]); cp[4] = saturateInt32 (cp[4] / (double) bp[4]); cp[5] = saturateInt32 (cp[5] / (double) bp[5]); cp[6] = saturateInt32 (cp[6] / (double) bp[6]); cp[7] = saturateInt32 (cp[7] / (double) bp[7]); cp[8] = saturateInt32 (cp[8] / (double) bp[8]); cp[9] = saturateInt32 (cp[9] / (double) bp[9]); cp[10] = saturateInt32 (cp[10] / (double) bp[10]); cp[11] = saturateInt32 (cp[11] / (double) bp[11]); cp[12] = saturateInt32 (cp[12] / (double) bp[12]); cp[13] = saturateInt32 (cp[13] / (double) bp[13]); cp[14] = saturateInt32 (cp[14] / (double) bp[14]); cp[15] = saturateInt32 (cp[15] / (double) bp[15]); cp[16] = saturateInt32 (cp[16] / (double) bp[16]); cp[17] = saturateInt32 (cp[17] / (double) bp[17]); cp[18] = saturateInt32 (cp[18] / (double) bp[18]); cp[19] = saturateInt32 (cp[19] / (double) bp[19]); cp[20] = saturateInt32 (cp[20] / (double) bp[20]); cp += 21; bp += 21; j -= 21; } while (j --> 0) { *cp = saturateInt32 (*cp / (double) *bp); cp++; bp++; } break; case BinOpItMode.AAIB: Int32* ap = ((Int32*)range.Item3 + range.Item1); while (j > 20) { cp[0] = saturateInt32 (ap[0] / (double) cp[0]); cp[1] = saturateInt32 (ap[1] / (double) cp[1]); cp[2] = saturateInt32 (ap[2] / (double) cp[2]); cp[3] = saturateInt32 (ap[3] / (double) cp[3]); cp[4] = saturateInt32 (ap[4] / (double) cp[4]); cp[5] = saturateInt32 (ap[5] / (double) cp[5]); cp[6] = saturateInt32 (ap[6] / (double) cp[6]); cp[7] = saturateInt32 (ap[7] / (double) cp[7]); cp[8] = saturateInt32 (ap[8] / (double) cp[8]); cp[9] = saturateInt32 (ap[9] / (double) cp[9]); cp[10] = saturateInt32 (ap[10] / (double) cp[10]); cp[11] = saturateInt32 (ap[11] / (double) cp[11]); cp[12] = saturateInt32 (ap[12] / (double) cp[12]); cp[13] = saturateInt32 (ap[13] / (double) cp[13]); cp[14] = saturateInt32 (ap[14] / (double) cp[14]); cp[15] = saturateInt32 (ap[15] / (double) cp[15]); cp[16] = saturateInt32 (ap[16] / (double) cp[16]); cp[17] = saturateInt32 (ap[17] / (double) cp[17]); cp[18] = saturateInt32 (ap[18] / (double) cp[18]); cp[19] = saturateInt32 (ap[19] / (double) cp[19]); cp[20] = saturateInt32 (ap[20] / (double) cp[20]); ap += 21; cp += 21; j -= 21; } while (j --> 0) { *cp = saturateInt32 (*ap / (double) *cp); ap++; cp++; } break; case BinOpItMode.AAN: ap = ((Int32*)range.Item3 + range.Item1); bp = ((Int32*)range.Item4 + range.Item1); while (j > 20) { cp[0] = saturateInt32 (ap[0] / (double) bp[0]); cp[1] = saturateInt32 (ap[1] / (double) bp[1]); cp[2] = saturateInt32 (ap[2] / (double) bp[2]); cp[3] = saturateInt32 (ap[3] / (double) bp[3]); cp[4] = saturateInt32 (ap[4] / (double) bp[4]); cp[5] = saturateInt32 (ap[5] / (double) bp[5]); cp[6] = saturateInt32 (ap[6] / (double) bp[6]); cp[7] = saturateInt32 (ap[7] / (double) bp[7]); cp[8] = saturateInt32 (ap[8] / (double) bp[8]); cp[9] = saturateInt32 (ap[9] / (double) bp[9]); cp[10] = saturateInt32 (ap[10] / (double) bp[10]); cp[11] = saturateInt32 (ap[11] / (double) bp[11]); cp[12] = saturateInt32 (ap[12] / (double) bp[12]); cp[13] = saturateInt32 (ap[13] / (double) bp[13]); cp[14] = saturateInt32 (ap[14] / (double) bp[14]); cp[15] = saturateInt32 (ap[15] / (double) bp[15]); cp[16] = saturateInt32 (ap[16] / (double) bp[16]); cp[17] = saturateInt32 (ap[17] / (double) bp[17]); cp[18] = saturateInt32 (ap[18] / (double) bp[18]); cp[19] = saturateInt32 (ap[19] / (double) bp[19]); cp[20] = saturateInt32 (ap[20] / (double) bp[20]); ap+=21; bp+=21; cp+=21; j-=21; } while (j --> 0) { *cp = saturateInt32 (*ap / (double) *bp); ap++; bp++; cp++; } break; case BinOpItMode.ASI: scalar = *((Int32*)range.Item4); while (j > 20) { cp[0] = saturateInt32 (cp[0] / (double) scalar); cp[1] = saturateInt32 (cp[1] / (double) scalar); cp[2] = saturateInt32 (cp[2] / (double) scalar); cp[3] = saturateInt32 (cp[3] / (double) scalar); cp[4] = saturateInt32 (cp[4] / (double) scalar); cp[5] = saturateInt32 (cp[5] / (double) scalar); cp[6] = saturateInt32 (cp[6] / (double) scalar); cp[7] = saturateInt32 (cp[7] / (double) scalar); cp[8] = saturateInt32 (cp[8] / (double) scalar); cp[9] = saturateInt32 (cp[9] / (double) scalar); cp[10] = saturateInt32 (cp[10] / (double) scalar); cp[11] = saturateInt32 (cp[11] / (double) scalar); cp[12] = saturateInt32 (cp[12] / (double) scalar); cp[13] = saturateInt32 (cp[13] / (double) scalar); cp[14] = saturateInt32 (cp[14] / (double) scalar); cp[15] = saturateInt32 (cp[15] / (double) scalar); cp[16] = saturateInt32 (cp[16] / (double) scalar); cp[17] = saturateInt32 (cp[17] / (double) scalar); cp[18] = saturateInt32 (cp[18] / (double) scalar); cp[19] = saturateInt32 (cp[19] / (double) scalar); cp[20] = saturateInt32 (cp[20] / (double) scalar); cp += 21; j -= 21; } while (j --> 0) { *cp = saturateInt32 (*cp / (double) scalar); cp++; } break; case BinOpItMode.ASN: ap = ((Int32*)range.Item3 + range.Item1); scalar = *((Int32*)range.Item4); while (j > 20) { cp[0] = saturateInt32 (ap[0] / (double) scalar); cp[1] = saturateInt32 (ap[1] / (double) scalar); cp[2] = saturateInt32 (ap[2] / (double) scalar); cp[3] = saturateInt32 (ap[3] / (double) scalar); cp[4] = saturateInt32 (ap[4] / (double) scalar); cp[5] = saturateInt32 (ap[5] / (double) scalar); cp[6] = saturateInt32 (ap[6] / (double) scalar); cp[7] = saturateInt32 (ap[7] / (double) scalar); cp[8] = saturateInt32 (ap[8] / (double) scalar); cp[9] = saturateInt32 (ap[9] / (double) scalar); cp[10] = saturateInt32 (ap[10] / (double) scalar); cp[11] = saturateInt32 (ap[11] / (double) scalar); cp[12] = saturateInt32 (ap[12] / (double) scalar); cp[13] = saturateInt32 (ap[13] / (double) scalar); cp[14] = saturateInt32 (ap[14] / (double) scalar); cp[15] = saturateInt32 (ap[15] / (double) scalar); cp[16] = saturateInt32 (ap[16] / (double) scalar); cp[17] = saturateInt32 (ap[17] / (double) scalar); cp[18] = saturateInt32 (ap[18] / (double) scalar); cp[19] = saturateInt32 (ap[19] / (double) scalar); cp[20] = saturateInt32 (ap[20] / (double) scalar); ap+=21; cp+=21; j -= 21; } while (j --> 0) { *cp = saturateInt32 (*ap / (double) scalar); ap++; cp++; } break; case BinOpItMode.SAI: scalar = *((Int32*)range.Item3); while (j > 20) { cp[0] = saturateInt32 (scalar / (double) cp[0]); cp[1] = saturateInt32 (scalar / (double) cp[1]); cp[2] = saturateInt32 (scalar / (double) cp[2]); cp[3] = saturateInt32 (scalar / (double) cp[3]); cp[4] = saturateInt32 (scalar / (double) cp[4]); cp[5] = saturateInt32 (scalar / (double) cp[5]); cp[6] = saturateInt32 (scalar / (double) cp[6]); cp[7] = saturateInt32 (scalar / (double) cp[7]); cp[8] = saturateInt32 (scalar / (double) cp[8]); cp[9] = saturateInt32 (scalar / (double) cp[9]); cp[10] = saturateInt32 (scalar / (double) cp[10]); cp[11] = saturateInt32 (scalar / (double) cp[11]); cp[12] = saturateInt32 (scalar / (double) cp[12]); cp[13] = saturateInt32 (scalar / (double) cp[13]); cp[14] = saturateInt32 (scalar / (double) cp[14]); cp[15] = saturateInt32 (scalar / (double) cp[15]); cp[16] = saturateInt32 (scalar / (double) cp[16]); cp[17] = saturateInt32 (scalar / (double) cp[17]); cp[18] = saturateInt32 (scalar / (double) cp[18]); cp[19] = saturateInt32 (scalar / (double) cp[19]); cp[20] = saturateInt32 (scalar / (double) cp[20]); cp += 21; j -= 21; } while (j --> 0) { *cp = saturateInt32 (scalar / (double) *cp); cp++; } break; case BinOpItMode.SAN: scalar = *((Int32*)range.Item3); bp = ((Int32*)range.Item4 + range.Item1); while (j > 20) { cp[0] = saturateInt32 (scalar / (double) bp[0]); cp[1] = saturateInt32 (scalar / (double) bp[1]); cp[2] = saturateInt32 (scalar / (double) bp[2]); cp[3] = saturateInt32 (scalar / (double) bp[3]); cp[4] = saturateInt32 (scalar / (double) bp[4]); cp[5] = saturateInt32 (scalar / (double) bp[5]); cp[6] = saturateInt32 (scalar / (double) bp[6]); cp[7] = saturateInt32 (scalar / (double) bp[7]); cp[8] = saturateInt32 (scalar / (double) bp[8]); cp[9] = saturateInt32 (scalar / (double) bp[9]); cp[10] = saturateInt32 (scalar / (double) bp[10]); cp[11] = saturateInt32 (scalar / (double) bp[11]); cp[12] = saturateInt32 (scalar / (double) bp[12]); cp[13] = saturateInt32 (scalar / (double) bp[13]); cp[14] = saturateInt32 (scalar / (double) bp[14]); cp[15] = saturateInt32 (scalar / (double) bp[15]); cp[16] = saturateInt32 (scalar / (double) bp[16]); cp[17] = saturateInt32 (scalar / (double) bp[17]); cp[18] = saturateInt32 (scalar / (double) bp[18]); cp[19] = saturateInt32 (scalar / (double) bp[19]); cp[20] = saturateInt32 (scalar / (double) bp[20]); bp+=21; cp+=21; j -= 21; } while (j --> 0) { *cp = saturateInt32 (scalar / (double) *bp); bp++; cp++; } break; default: break; } #endregion System.Threading.Interlocked.Decrement(ref workerCount); //retStorage.PendingEvents.Signal(); }; #region do the work int workItemCount = Settings.s_maxNumberThreads, workItemLength; if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) { if (outLen / workItemCount > Settings.s_minParallelElement1Count) { workItemLength = outLen / workItemCount; //workItemLength = (int)((double)outLen / workItemCount * 1.05); } else { workItemLength = outLen / 2; workItemCount = 2; } } else { workItemLength = outLen; workItemCount = 1; } fixed ( Int32* arrAP = arrA) fixed ( Int32* arrBP = arrB) fixed ( Int32* retArrP = retArr) { for (; i < workItemCount - 1; i++) { Tuple range = new Tuple (i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode); System.Threading.Interlocked.Increment(ref workerCount); ILThreadPool.QueueUserWorkItem(i, worker, range); } // the last (or may the only) chunk is done right here //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks); worker(new Tuple (i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode)); ILThreadPool.Wait4Workers(ref workerCount); } #endregion return new ILRetArray< Int32>(retStorage); } } private static unsafe ILRetArray divideEx(ILInArray A, ILInArray B) { //using (ILScope.Enter(A, B)) { we cannot start a new scope here, since this would prevent A and B to be used implace if applicable #region parameter checking if (isnull(A) || isnull(B)) return empty(ILSize.Empty00); if (A.IsEmpty) { return empty(B.S); } else if (B.IsEmpty) { return empty(A.S); } //if (A.IsScalar || B.IsScalar || A.D.IsSameSize(B.D)) // return add(A,B); int dim = -1; for (int l = 0; l < Math.Max(A.S.NumberOfDimensions, B.S.NumberOfDimensions); l++) { if (A.S[l] != B.S[l]) { if (dim >= 0 || (A.S[l] != 1 && B.S[l] != 1)) { throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B"); } dim = l; } } if (dim > 1) throw new ILArgumentException("singleton dimension expansion currently is only supported for colum- and row vectors"); dim = -(dim - 1); // 0 -> 1, 1 -> 0 #endregion #region parameter preparation Int32[] retArr; Int32[] arrA = A.GetArrayForRead(); Int32[] arrB = B.GetArrayForRead(); ILSize outDims; BinOptItExMode mode; int workItemMultiplierLenA; int workItemMultiplierLenB; if (A.IsVector) { outDims = B.S; if (!B.TryGetStorage4InplaceOp(out retArr)) { retArr = ILMemoryPool.Pool.New(outDims.NumberOfElements); mode = BinOptItExMode.VAN; } else { mode = BinOptItExMode.VAI; } workItemMultiplierLenB = outDims[0]; workItemMultiplierLenA = dim; // 0 for column, 1 for row vector } else if (B.IsVector) { outDims = A.S; if (!A.TryGetStorage4InplaceOp(out retArr)) { retArr = ILMemoryPool.Pool.New(outDims.NumberOfElements); mode = BinOptItExMode.AVN; } else { mode = BinOptItExMode.AVI; } workItemMultiplierLenB = dim; // 0 for column, 1 for row vector workItemMultiplierLenA = outDims[0]; } else { throw new ILArgumentException("A and B must have the same size except for one singleton dimension in either A or B"); } int itLen = outDims[0]; // (dim == 0) ? outDims.SequentialIndexDistance(1) : outDims.SequentialIndexDistance(0); #endregion #region worker loops definition ILDenseStorage retStorage = new ILDenseStorage(retArr, outDims); int workerCount = 1; Action worker = data => { // expects: iStart, iLen, ap, bp, cp Tuple range = (Tuple)data; Int32* ap; Int32* bp; Int32* cp; switch (mode) { case BinOptItExMode.VAN: if (dim == 0) { bp = (Int32*)range.Item3; cp = (Int32*)range.Item4; for (int s = 0; s < range.Item1; s++) { ap = (Int32*)range.Item2; int l = itLen; while (l > 10) { cp[0] = saturateInt32 (ap[0] / (double) bp[0]); cp[1] = saturateInt32 (ap[1] / (double) bp[1]); cp[2] = saturateInt32 (ap[2] / (double) bp[2]); cp[3] = saturateInt32 (ap[3] / (double) bp[3]); cp[4] = saturateInt32 (ap[4] / (double) bp[4]); cp[5] = saturateInt32 (ap[5] / (double) bp[5]); cp[6] = saturateInt32 (ap[6] / (double) bp[6]); cp[7] = saturateInt32 (ap[7] / (double) bp[7]); cp[8] = saturateInt32 (ap[8] / (double) bp[8]); cp[9] = saturateInt32 (ap[9] / (double) bp[9]); cp[10] = saturateInt32 (ap[10] / (double) bp[10]); ap += 11; bp += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp++ = saturateInt32 (*ap++ / (double) *bp++); } } } else { // dim == 1 ap = (Int32*)range.Item2; bp = (Int32*)range.Item3; cp = (Int32*)range.Item4; for (int s = 0; s < range.Item1; s++) { Int32 val = *ap++; int l = itLen; while (l > 10) { cp[0] = saturateInt32 (val / (double) bp[0]); cp[1] = saturateInt32 (val / (double) bp[1]); cp[2] = saturateInt32 (val / (double) bp[2]); cp[3] = saturateInt32 (val / (double) bp[3]); cp[4] = saturateInt32 (val / (double) bp[4]); cp[5] = saturateInt32 (val / (double) bp[5]); cp[6] = saturateInt32 (val / (double) bp[6]); cp[7] = saturateInt32 (val / (double) bp[7]); cp[8] = saturateInt32 (val / (double) bp[8]); cp[9] = saturateInt32 (val / (double) bp[9]); cp[10] = saturateInt32 (val / (double) bp[10]); bp += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp++ = saturateInt32 (val / (double) *bp++); } } } break; case BinOptItExMode.VAI: if (dim == 0) { cp = (Int32*)range.Item4; for (int s = 0; s < range.Item1; s++) { ap = (Int32*)range.Item2; int l = itLen; while (l > 10) { cp[0] = saturateInt32 (ap[0] / (double) cp[0]); cp[1] = saturateInt32 (ap[1] / (double) cp[1]); cp[2] = saturateInt32 (ap[2] / (double) cp[2]); cp[3] = saturateInt32 (ap[3] / (double) cp[3]); cp[4] = saturateInt32 (ap[4] / (double) cp[4]); cp[5] = saturateInt32 (ap[5] / (double) cp[5]); cp[6] = saturateInt32 (ap[6] / (double) cp[6]); cp[7] = saturateInt32 (ap[7] / (double) cp[7]); cp[8] = saturateInt32 (ap[8] / (double) cp[8]); cp[9] = saturateInt32 (ap[9] / (double) cp[9]); cp[10] = saturateInt32 (ap[10] / (double) cp[10]); ap += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp = saturateInt32 (*ap++ / (double) *cp); cp++; } } } else { // dim == 1 cp = (Int32*)range.Item4; ap = (Int32*)range.Item2; for (int s = 0; s < range.Item1; s++) { Int32 val = *ap++; int l = itLen; while (l > 10) { cp[0] = saturateInt32 (val / (double) cp[0]); cp[1] = saturateInt32 (val / (double) cp[1]); cp[2] = saturateInt32 (val / (double) cp[2]); cp[3] = saturateInt32 (val / (double) cp[3]); cp[4] = saturateInt32 (val / (double) cp[4]); cp[5] = saturateInt32 (val / (double) cp[5]); cp[6] = saturateInt32 (val / (double) cp[6]); cp[7] = saturateInt32 (val / (double) cp[7]); cp[8] = saturateInt32 (val / (double) cp[8]); cp[9] = saturateInt32 (val / (double) cp[9]); cp[10] = saturateInt32 (val / (double) cp[10]); cp += 11; l -= 11; } while (l-- > 0) { *cp = saturateInt32 (val / (double) *cp); cp++; } } } break; case BinOptItExMode.AVN: if (dim == 0) { ap = (Int32*)range.Item2; cp = (Int32*)range.Item4; for (int s = 0; s < range.Item1; s++) { bp = (Int32*)range.Item3; int l = itLen; while (l > 10) { cp[0] = saturateInt32 (ap[0] / (double) bp[0]); cp[1] = saturateInt32 (ap[1] / (double) bp[1]); cp[2] = saturateInt32 (ap[2] / (double) bp[2]); cp[3] = saturateInt32 (ap[3] / (double) bp[3]); cp[4] = saturateInt32 (ap[4] / (double) bp[4]); cp[5] = saturateInt32 (ap[5] / (double) bp[5]); cp[6] = saturateInt32 (ap[6] / (double) bp[6]); cp[7] = saturateInt32 (ap[7] / (double) bp[7]); cp[8] = saturateInt32 (ap[8] / (double) bp[8]); cp[9] = saturateInt32 (ap[9] / (double) bp[9]); cp[10] = saturateInt32 (ap[10] / (double) bp[10]); ap += 11; bp += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp = saturateInt32 (*ap / (double) *bp); ap++; bp++; cp++; } } } else { // dim = 1 ap = (Int32*)range.Item2; bp = (Int32*)range.Item3; cp = (Int32*)range.Item4; for (int s = 0; s < range.Item1; s++) { Int32 val = *bp++; int l = itLen; while (l > 10) { cp[0] = saturateInt32 (ap[0] / (double) val); cp[1] = saturateInt32 (ap[1] / (double) val); cp[2] = saturateInt32 (ap[2] / (double) val); cp[3] = saturateInt32 (ap[3] / (double) val); cp[4] = saturateInt32 (ap[4] / (double) val); cp[5] = saturateInt32 (ap[5] / (double) val); cp[6] = saturateInt32 (ap[6] / (double) val); cp[7] = saturateInt32 (ap[7] / (double) val); cp[8] = saturateInt32 (ap[8] / (double) val); cp[9] = saturateInt32 (ap[9] / (double) val); cp[10] = saturateInt32 (ap[10] / (double) val); ap += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp = saturateInt32 (*ap / (double) val); ap++; cp++; } } } break; case BinOptItExMode.AVI: if (dim == 0) { cp = (Int32*)range.Item4; for (int s = 0; s < range.Item1; s++) { bp = (Int32*)range.Item3; int l = itLen; while (l > 10) { cp[0] = saturateInt32 (cp[0] / (double) bp[0]); cp[1] = saturateInt32 (cp[1] / (double) bp[1]); cp[2] = saturateInt32 (cp[2] / (double) bp[2]); cp[3] = saturateInt32 (cp[3] / (double) bp[3]); cp[4] = saturateInt32 (cp[4] / (double) bp[4]); cp[5] = saturateInt32 (cp[5] / (double) bp[5]); cp[6] = saturateInt32 (cp[6] / (double) bp[6]); cp[7] = saturateInt32 (cp[7] / (double) bp[7]); cp[8] = saturateInt32 (cp[8] / (double) bp[8]); cp[9] = saturateInt32 (cp[9] / (double) bp[9]); cp[10] = saturateInt32 (cp[10] / (double) bp[10]); bp += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp = saturateInt32 (*cp / (double) *bp); bp++; cp++; } } } else { // dim = 1 bp = (Int32*)range.Item3; cp = (Int32*)range.Item4; for (int s = 0; s < range.Item1; s++) { Int32 val = *bp++; int l = itLen; while (l > 10) { cp[0] = saturateInt32 (cp[0] / (double) val); cp[1] = saturateInt32 (cp[1] / (double) val); cp[2] = saturateInt32 (cp[2] / (double) val); cp[3] = saturateInt32 (cp[3] / (double) val); cp[4] = saturateInt32 (cp[4] / (double) val); cp[5] = saturateInt32 (cp[5] / (double) val); cp[6] = saturateInt32 (cp[6] / (double) val); cp[7] = saturateInt32 (cp[7] / (double) val); cp[8] = saturateInt32 (cp[8] / (double) val); cp[9] = saturateInt32 (cp[9] / (double) val); cp[10] = saturateInt32 (cp[10] / (double) val); cp += 11; l -= 11; } while (l --> 0) { *cp = saturateInt32 (*cp / (double) val); cp++; } } } break; } System.Threading.Interlocked.Decrement(ref workerCount); }; #endregion #region work distribution int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength; if (Settings.s_maxNumberThreads > 1 && outDims.NumberOfElements >= Settings.s_minParallelElement1Count && outDims[1] > 1) { if (outDims[1] > workItemCount) { workItemLength = outDims[1] / workItemCount; } else { workItemLength = outDims[1] / 2; workItemCount = 2; } } else { workItemLength = outDims[1]; workItemCount = 1; } fixed ( Int32* arrAP = arrA) fixed ( Int32* arrBP = arrB) fixed ( Int32* retArrP = retArr) { for (; i < workItemCount - 1; i++) { Tuple range = new Tuple (workItemLength , (IntPtr)(arrAP + i * workItemMultiplierLenA * workItemLength) , (IntPtr)(arrBP + i * workItemMultiplierLenB * workItemLength) , (IntPtr)(retArrP + i * outDims[0] * workItemLength)); System.Threading.Interlocked.Increment(ref workerCount); ILThreadPool.QueueUserWorkItem(i, worker, range); } // the last (or may the only) chunk is done right here //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks); worker(new Tuple (outDims[1] - i * workItemLength , (IntPtr)(arrAP + i * workItemMultiplierLenA * workItemLength) , (IntPtr)(arrBP + i * workItemMultiplierLenB * workItemLength) , (IntPtr)(retArrP + i * outDims[0] * workItemLength))); ILThreadPool.Wait4Workers(ref workerCount); } #endregion return new ILRetArray(retStorage); //} // no scopes here! it disables implace operations } /// Divide elements /// Input array A /// Input array B /// Array with elementwise division of A and B /// On empty input an empty array will be returned. /// A and/or B may be scalar. The scalar value will be applied on all elements of the /// other array. /// If A or B is a colum vector and the other parameter is an array with a matching colum length, the vector is used to operate on all columns of the array. /// Similar, if one parameter is a row vector, it is used to operate along the rows of the other array if its number of columns matches the vector length. This feature /// can be used to replace the (costly) repmat function for most binary operators. /// For all other cases the dimensions of A and B must match. /// If the size of both arrays does not match any parameter rule. public unsafe static ILRetArray divide(ILInArray A, ILInArray B) { using (ILScope.Enter(A,B)) { int outLen; BinOpItMode mode; float [] retArr; float [] arrA = A.GetArrayForRead(); float[] arrB = B.GetArrayForRead(); ILSize outDims; #region determine operation mode if (A.IsScalar) { outDims = B.Size; if (B.IsScalar) { return new ILRetArray (new float [1]{ (A.GetValue(0) / B.GetValue(0))}, A.Size); } else if (B.IsEmpty) { return ILRetArray.empty(outDims); } else { outLen = outDims.NumberOfElements; if (!B.TryGetStorage4InplaceOp(out retArr)) { retArr = ILMemoryPool.Pool.New< float > (outLen); mode = BinOpItMode.SAN; } else { mode = BinOpItMode.SAI; } } } else { outDims = A.Size; if (B.IsScalar) { if (A.IsEmpty) { return ILRetArray.empty(A.Size); } outLen = A.S.NumberOfElements; if (!A.TryGetStorage4InplaceOp(out retArr)) { retArr = ILMemoryPool.Pool.New< float > (outLen); mode = BinOpItMode.ASN; } else { mode = BinOpItMode.ASI; } } else { // array + array if (!A.Size.IsSameSize(B.Size)) { return divideEx(A,B); } outLen = A.S.NumberOfElements; if (A.TryGetStorage4InplaceOp(out retArr)) mode = BinOpItMode.AAIA; else if (B.TryGetStorage4InplaceOp(out retArr)) mode = BinOpItMode.AAIB; else { retArr = ILMemoryPool.Pool.New< float > (outLen); mode = BinOpItMode.AAN; } } } #endregion ILDenseStorage retStorage = new ILDenseStorage(retArr, outDims); int i = 0, workerCount = 1; Action worker = data => { Tuple range = (Tuple)data; float* cp = (float*)range.Item5 + range.Item1; float scalar; int j = range.Item2; #region loops switch (mode) { case BinOpItMode.AAIA: float* bp = ((float*)range.Item4 + range.Item1); while (j > 20) { cp[0] = (cp[0] / bp[0]); cp[1] = (cp[1] / bp[1]); cp[2] = (cp[2] / bp[2]); cp[3] = (cp[3] / bp[3]); cp[4] = (cp[4] / bp[4]); cp[5] = (cp[5] / bp[5]); cp[6] = (cp[6] / bp[6]); cp[7] = (cp[7] / bp[7]); cp[8] = (cp[8] / bp[8]); cp[9] = (cp[9] / bp[9]); cp[10] = (cp[10] / bp[10]); cp[11] = (cp[11] / bp[11]); cp[12] = (cp[12] / bp[12]); cp[13] = (cp[13] / bp[13]); cp[14] = (cp[14] / bp[14]); cp[15] = (cp[15] / bp[15]); cp[16] = (cp[16] / bp[16]); cp[17] = (cp[17] / bp[17]); cp[18] = (cp[18] / bp[18]); cp[19] = (cp[19] / bp[19]); cp[20] = (cp[20] / bp[20]); cp += 21; bp += 21; j -= 21; } while (j --> 0) { *cp = (*cp / *bp); cp++; bp++; } break; case BinOpItMode.AAIB: float* ap = ((float*)range.Item3 + range.Item1); while (j > 20) { cp[0] = (ap[0] / cp[0]); cp[1] = (ap[1] / cp[1]); cp[2] = (ap[2] / cp[2]); cp[3] = (ap[3] / cp[3]); cp[4] = (ap[4] / cp[4]); cp[5] = (ap[5] / cp[5]); cp[6] = (ap[6] / cp[6]); cp[7] = (ap[7] / cp[7]); cp[8] = (ap[8] / cp[8]); cp[9] = (ap[9] / cp[9]); cp[10] = (ap[10] / cp[10]); cp[11] = (ap[11] / cp[11]); cp[12] = (ap[12] / cp[12]); cp[13] = (ap[13] / cp[13]); cp[14] = (ap[14] / cp[14]); cp[15] = (ap[15] / cp[15]); cp[16] = (ap[16] / cp[16]); cp[17] = (ap[17] / cp[17]); cp[18] = (ap[18] / cp[18]); cp[19] = (ap[19] / cp[19]); cp[20] = (ap[20] / cp[20]); ap += 21; cp += 21; j -= 21; } while (j --> 0) { *cp = (*ap / *cp); ap++; cp++; } break; case BinOpItMode.AAN: ap = ((float*)range.Item3 + range.Item1); bp = ((float*)range.Item4 + range.Item1); while (j > 20) { cp[0] = (ap[0] / bp[0]); cp[1] = (ap[1] / bp[1]); cp[2] = (ap[2] / bp[2]); cp[3] = (ap[3] / bp[3]); cp[4] = (ap[4] / bp[4]); cp[5] = (ap[5] / bp[5]); cp[6] = (ap[6] / bp[6]); cp[7] = (ap[7] / bp[7]); cp[8] = (ap[8] / bp[8]); cp[9] = (ap[9] / bp[9]); cp[10] = (ap[10] / bp[10]); cp[11] = (ap[11] / bp[11]); cp[12] = (ap[12] / bp[12]); cp[13] = (ap[13] / bp[13]); cp[14] = (ap[14] / bp[14]); cp[15] = (ap[15] / bp[15]); cp[16] = (ap[16] / bp[16]); cp[17] = (ap[17] / bp[17]); cp[18] = (ap[18] / bp[18]); cp[19] = (ap[19] / bp[19]); cp[20] = (ap[20] / bp[20]); ap+=21; bp+=21; cp+=21; j-=21; } while (j --> 0) { *cp = (*ap / *bp); ap++; bp++; cp++; } break; case BinOpItMode.ASI: scalar = *((float*)range.Item4); while (j > 20) { cp[0] = (cp[0] / scalar); cp[1] = (cp[1] / scalar); cp[2] = (cp[2] / scalar); cp[3] = (cp[3] / scalar); cp[4] = (cp[4] / scalar); cp[5] = (cp[5] / scalar); cp[6] = (cp[6] / scalar); cp[7] = (cp[7] / scalar); cp[8] = (cp[8] / scalar); cp[9] = (cp[9] / scalar); cp[10] = (cp[10] / scalar); cp[11] = (cp[11] / scalar); cp[12] = (cp[12] / scalar); cp[13] = (cp[13] / scalar); cp[14] = (cp[14] / scalar); cp[15] = (cp[15] / scalar); cp[16] = (cp[16] / scalar); cp[17] = (cp[17] / scalar); cp[18] = (cp[18] / scalar); cp[19] = (cp[19] / scalar); cp[20] = (cp[20] / scalar); cp += 21; j -= 21; } while (j --> 0) { *cp = (*cp / scalar); cp++; } break; case BinOpItMode.ASN: ap = ((float*)range.Item3 + range.Item1); scalar = *((float*)range.Item4); while (j > 20) { cp[0] = (ap[0] / scalar); cp[1] = (ap[1] / scalar); cp[2] = (ap[2] / scalar); cp[3] = (ap[3] / scalar); cp[4] = (ap[4] / scalar); cp[5] = (ap[5] / scalar); cp[6] = (ap[6] / scalar); cp[7] = (ap[7] / scalar); cp[8] = (ap[8] / scalar); cp[9] = (ap[9] / scalar); cp[10] = (ap[10] / scalar); cp[11] = (ap[11] / scalar); cp[12] = (ap[12] / scalar); cp[13] = (ap[13] / scalar); cp[14] = (ap[14] / scalar); cp[15] = (ap[15] / scalar); cp[16] = (ap[16] / scalar); cp[17] = (ap[17] / scalar); cp[18] = (ap[18] / scalar); cp[19] = (ap[19] / scalar); cp[20] = (ap[20] / scalar); ap+=21; cp+=21; j -= 21; } while (j --> 0) { *cp = (*ap / scalar); ap++; cp++; } break; case BinOpItMode.SAI: scalar = *((float*)range.Item3); while (j > 20) { cp[0] = (scalar / cp[0]); cp[1] = (scalar / cp[1]); cp[2] = (scalar / cp[2]); cp[3] = (scalar / cp[3]); cp[4] = (scalar / cp[4]); cp[5] = (scalar / cp[5]); cp[6] = (scalar / cp[6]); cp[7] = (scalar / cp[7]); cp[8] = (scalar / cp[8]); cp[9] = (scalar / cp[9]); cp[10] = (scalar / cp[10]); cp[11] = (scalar / cp[11]); cp[12] = (scalar / cp[12]); cp[13] = (scalar / cp[13]); cp[14] = (scalar / cp[14]); cp[15] = (scalar / cp[15]); cp[16] = (scalar / cp[16]); cp[17] = (scalar / cp[17]); cp[18] = (scalar / cp[18]); cp[19] = (scalar / cp[19]); cp[20] = (scalar / cp[20]); cp += 21; j -= 21; } while (j --> 0) { *cp = (scalar / *cp); cp++; } break; case BinOpItMode.SAN: scalar = *((float*)range.Item3); bp = ((float*)range.Item4 + range.Item1); while (j > 20) { cp[0] = (scalar / bp[0]); cp[1] = (scalar / bp[1]); cp[2] = (scalar / bp[2]); cp[3] = (scalar / bp[3]); cp[4] = (scalar / bp[4]); cp[5] = (scalar / bp[5]); cp[6] = (scalar / bp[6]); cp[7] = (scalar / bp[7]); cp[8] = (scalar / bp[8]); cp[9] = (scalar / bp[9]); cp[10] = (scalar / bp[10]); cp[11] = (scalar / bp[11]); cp[12] = (scalar / bp[12]); cp[13] = (scalar / bp[13]); cp[14] = (scalar / bp[14]); cp[15] = (scalar / bp[15]); cp[16] = (scalar / bp[16]); cp[17] = (scalar / bp[17]); cp[18] = (scalar / bp[18]); cp[19] = (scalar / bp[19]); cp[20] = (scalar / bp[20]); bp+=21; cp+=21; j -= 21; } while (j --> 0) { *cp = (scalar / *bp); bp++; cp++; } break; default: break; } #endregion System.Threading.Interlocked.Decrement(ref workerCount); //retStorage.PendingEvents.Signal(); }; #region do the work int workItemCount = Settings.s_maxNumberThreads, workItemLength; if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) { if (outLen / workItemCount > Settings.s_minParallelElement1Count) { workItemLength = outLen / workItemCount; //workItemLength = (int)((double)outLen / workItemCount * 1.05); } else { workItemLength = outLen / 2; workItemCount = 2; } } else { workItemLength = outLen; workItemCount = 1; } fixed ( float* arrAP = arrA) fixed ( float* arrBP = arrB) fixed ( float* retArrP = retArr) { for (; i < workItemCount - 1; i++) { Tuple range = new Tuple (i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode); System.Threading.Interlocked.Increment(ref workerCount); ILThreadPool.QueueUserWorkItem(i, worker, range); } // the last (or may the only) chunk is done right here //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks); worker(new Tuple (i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode)); ILThreadPool.Wait4Workers(ref workerCount); } #endregion return new ILRetArray< float>(retStorage); } } private static unsafe ILRetArray divideEx(ILInArray A, ILInArray B) { //using (ILScope.Enter(A, B)) { we cannot start a new scope here, since this would prevent A and B to be used implace if applicable #region parameter checking if (isnull(A) || isnull(B)) return empty(ILSize.Empty00); if (A.IsEmpty) { return empty(B.S); } else if (B.IsEmpty) { return empty(A.S); } //if (A.IsScalar || B.IsScalar || A.D.IsSameSize(B.D)) // return add(A,B); int dim = -1; for (int l = 0; l < Math.Max(A.S.NumberOfDimensions, B.S.NumberOfDimensions); l++) { if (A.S[l] != B.S[l]) { if (dim >= 0 || (A.S[l] != 1 && B.S[l] != 1)) { throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B"); } dim = l; } } if (dim > 1) throw new ILArgumentException("singleton dimension expansion currently is only supported for colum- and row vectors"); dim = -(dim - 1); // 0 -> 1, 1 -> 0 #endregion #region parameter preparation float[] retArr; float[] arrA = A.GetArrayForRead(); float[] arrB = B.GetArrayForRead(); ILSize outDims; BinOptItExMode mode; int workItemMultiplierLenA; int workItemMultiplierLenB; if (A.IsVector) { outDims = B.S; if (!B.TryGetStorage4InplaceOp(out retArr)) { retArr = ILMemoryPool.Pool.New(outDims.NumberOfElements); mode = BinOptItExMode.VAN; } else { mode = BinOptItExMode.VAI; } workItemMultiplierLenB = outDims[0]; workItemMultiplierLenA = dim; // 0 for column, 1 for row vector } else if (B.IsVector) { outDims = A.S; if (!A.TryGetStorage4InplaceOp(out retArr)) { retArr = ILMemoryPool.Pool.New(outDims.NumberOfElements); mode = BinOptItExMode.AVN; } else { mode = BinOptItExMode.AVI; } workItemMultiplierLenB = dim; // 0 for column, 1 for row vector workItemMultiplierLenA = outDims[0]; } else { throw new ILArgumentException("A and B must have the same size except for one singleton dimension in either A or B"); } int itLen = outDims[0]; // (dim == 0) ? outDims.SequentialIndexDistance(1) : outDims.SequentialIndexDistance(0); #endregion #region worker loops definition ILDenseStorage retStorage = new ILDenseStorage(retArr, outDims); int workerCount = 1; Action worker = data => { // expects: iStart, iLen, ap, bp, cp Tuple range = (Tuple)data; float* ap; float* bp; float* cp; switch (mode) { case BinOptItExMode.VAN: if (dim == 0) { bp = (float*)range.Item3; cp = (float*)range.Item4; for (int s = 0; s < range.Item1; s++) { ap = (float*)range.Item2; int l = itLen; while (l > 10) { cp[0] = (ap[0] / bp[0]); cp[1] = (ap[1] / bp[1]); cp[2] = (ap[2] / bp[2]); cp[3] = (ap[3] / bp[3]); cp[4] = (ap[4] / bp[4]); cp[5] = (ap[5] / bp[5]); cp[6] = (ap[6] / bp[6]); cp[7] = (ap[7] / bp[7]); cp[8] = (ap[8] / bp[8]); cp[9] = (ap[9] / bp[9]); cp[10] = (ap[10] / bp[10]); ap += 11; bp += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp++ = (*ap++ / *bp++); } } } else { // dim == 1 ap = (float*)range.Item2; bp = (float*)range.Item3; cp = (float*)range.Item4; for (int s = 0; s < range.Item1; s++) { float val = *ap++; int l = itLen; while (l > 10) { cp[0] = (val / bp[0]); cp[1] = (val / bp[1]); cp[2] = (val / bp[2]); cp[3] = (val / bp[3]); cp[4] = (val / bp[4]); cp[5] = (val / bp[5]); cp[6] = (val / bp[6]); cp[7] = (val / bp[7]); cp[8] = (val / bp[8]); cp[9] = (val / bp[9]); cp[10] = (val / bp[10]); bp += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp++ = (val / *bp++); } } } break; case BinOptItExMode.VAI: if (dim == 0) { cp = (float*)range.Item4; for (int s = 0; s < range.Item1; s++) { ap = (float*)range.Item2; int l = itLen; while (l > 10) { cp[0] = (ap[0] / cp[0]); cp[1] = (ap[1] / cp[1]); cp[2] = (ap[2] / cp[2]); cp[3] = (ap[3] / cp[3]); cp[4] = (ap[4] / cp[4]); cp[5] = (ap[5] / cp[5]); cp[6] = (ap[6] / cp[6]); cp[7] = (ap[7] / cp[7]); cp[8] = (ap[8] / cp[8]); cp[9] = (ap[9] / cp[9]); cp[10] = (ap[10] / cp[10]); ap += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp = (*ap++ / *cp); cp++; } } } else { // dim == 1 cp = (float*)range.Item4; ap = (float*)range.Item2; for (int s = 0; s < range.Item1; s++) { float val = *ap++; int l = itLen; while (l > 10) { cp[0] = (val / cp[0]); cp[1] = (val / cp[1]); cp[2] = (val / cp[2]); cp[3] = (val / cp[3]); cp[4] = (val / cp[4]); cp[5] = (val / cp[5]); cp[6] = (val / cp[6]); cp[7] = (val / cp[7]); cp[8] = (val / cp[8]); cp[9] = (val / cp[9]); cp[10] = (val / cp[10]); cp += 11; l -= 11; } while (l-- > 0) { *cp = (val / *cp); cp++; } } } break; case BinOptItExMode.AVN: if (dim == 0) { ap = (float*)range.Item2; cp = (float*)range.Item4; for (int s = 0; s < range.Item1; s++) { bp = (float*)range.Item3; int l = itLen; while (l > 10) { cp[0] = (ap[0] / bp[0]); cp[1] = (ap[1] / bp[1]); cp[2] = (ap[2] / bp[2]); cp[3] = (ap[3] / bp[3]); cp[4] = (ap[4] / bp[4]); cp[5] = (ap[5] / bp[5]); cp[6] = (ap[6] / bp[6]); cp[7] = (ap[7] / bp[7]); cp[8] = (ap[8] / bp[8]); cp[9] = (ap[9] / bp[9]); cp[10] = (ap[10] / bp[10]); ap += 11; bp += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp = (*ap / *bp); ap++; bp++; cp++; } } } else { // dim = 1 ap = (float*)range.Item2; bp = (float*)range.Item3; cp = (float*)range.Item4; for (int s = 0; s < range.Item1; s++) { float val = *bp++; int l = itLen; while (l > 10) { cp[0] = (ap[0] / val); cp[1] = (ap[1] / val); cp[2] = (ap[2] / val); cp[3] = (ap[3] / val); cp[4] = (ap[4] / val); cp[5] = (ap[5] / val); cp[6] = (ap[6] / val); cp[7] = (ap[7] / val); cp[8] = (ap[8] / val); cp[9] = (ap[9] / val); cp[10] = (ap[10] / val); ap += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp = (*ap / val); ap++; cp++; } } } break; case BinOptItExMode.AVI: if (dim == 0) { cp = (float*)range.Item4; for (int s = 0; s < range.Item1; s++) { bp = (float*)range.Item3; int l = itLen; while (l > 10) { cp[0] = (cp[0] / bp[0]); cp[1] = (cp[1] / bp[1]); cp[2] = (cp[2] / bp[2]); cp[3] = (cp[3] / bp[3]); cp[4] = (cp[4] / bp[4]); cp[5] = (cp[5] / bp[5]); cp[6] = (cp[6] / bp[6]); cp[7] = (cp[7] / bp[7]); cp[8] = (cp[8] / bp[8]); cp[9] = (cp[9] / bp[9]); cp[10] = (cp[10] / bp[10]); bp += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp = (*cp / *bp); bp++; cp++; } } } else { // dim = 1 bp = (float*)range.Item3; cp = (float*)range.Item4; for (int s = 0; s < range.Item1; s++) { float val = *bp++; int l = itLen; while (l > 10) { cp[0] = (cp[0] / val); cp[1] = (cp[1] / val); cp[2] = (cp[2] / val); cp[3] = (cp[3] / val); cp[4] = (cp[4] / val); cp[5] = (cp[5] / val); cp[6] = (cp[6] / val); cp[7] = (cp[7] / val); cp[8] = (cp[8] / val); cp[9] = (cp[9] / val); cp[10] = (cp[10] / val); cp += 11; l -= 11; } while (l --> 0) { *cp = (*cp / val); cp++; } } } break; } System.Threading.Interlocked.Decrement(ref workerCount); }; #endregion #region work distribution int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength; if (Settings.s_maxNumberThreads > 1 && outDims.NumberOfElements >= Settings.s_minParallelElement1Count && outDims[1] > 1) { if (outDims[1] > workItemCount) { workItemLength = outDims[1] / workItemCount; } else { workItemLength = outDims[1] / 2; workItemCount = 2; } } else { workItemLength = outDims[1]; workItemCount = 1; } fixed ( float* arrAP = arrA) fixed ( float* arrBP = arrB) fixed ( float* retArrP = retArr) { for (; i < workItemCount - 1; i++) { Tuple range = new Tuple (workItemLength , (IntPtr)(arrAP + i * workItemMultiplierLenA * workItemLength) , (IntPtr)(arrBP + i * workItemMultiplierLenB * workItemLength) , (IntPtr)(retArrP + i * outDims[0] * workItemLength)); System.Threading.Interlocked.Increment(ref workerCount); ILThreadPool.QueueUserWorkItem(i, worker, range); } // the last (or may the only) chunk is done right here //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks); worker(new Tuple (outDims[1] - i * workItemLength , (IntPtr)(arrAP + i * workItemMultiplierLenA * workItemLength) , (IntPtr)(arrBP + i * workItemMultiplierLenB * workItemLength) , (IntPtr)(retArrP + i * outDims[0] * workItemLength))); ILThreadPool.Wait4Workers(ref workerCount); } #endregion return new ILRetArray(retStorage); //} // no scopes here! it disables implace operations } /// Divide elements /// Input array A /// Input array B /// Array with elementwise division of A and B /// On empty input an empty array will be returned. /// A and/or B may be scalar. The scalar value will be applied on all elements of the /// other array. /// If A or B is a colum vector and the other parameter is an array with a matching colum length, the vector is used to operate on all columns of the array. /// Similar, if one parameter is a row vector, it is used to operate along the rows of the other array if its number of columns matches the vector length. This feature /// can be used to replace the (costly) repmat function for most binary operators. /// For all other cases the dimensions of A and B must match. /// If the size of both arrays does not match any parameter rule. public unsafe static ILRetArray divide(ILInArray A, ILInArray B) { using (ILScope.Enter(A,B)) { int outLen; BinOpItMode mode; fcomplex [] retArr; fcomplex [] arrA = A.GetArrayForRead(); fcomplex[] arrB = B.GetArrayForRead(); ILSize outDims; #region determine operation mode if (A.IsScalar) { outDims = B.Size; if (B.IsScalar) { return new ILRetArray (new fcomplex [1]{ (A.GetValue(0) / B.GetValue(0))}, A.Size); } else if (B.IsEmpty) { return ILRetArray.empty(outDims); } else { outLen = outDims.NumberOfElements; if (!B.TryGetStorage4InplaceOp(out retArr)) { retArr = ILMemoryPool.Pool.New< fcomplex > (outLen); mode = BinOpItMode.SAN; } else { mode = BinOpItMode.SAI; } } } else { outDims = A.Size; if (B.IsScalar) { if (A.IsEmpty) { return ILRetArray.empty(A.Size); } outLen = A.S.NumberOfElements; if (!A.TryGetStorage4InplaceOp(out retArr)) { retArr = ILMemoryPool.Pool.New< fcomplex > (outLen); mode = BinOpItMode.ASN; } else { mode = BinOpItMode.ASI; } } else { // array + array if (!A.Size.IsSameSize(B.Size)) { return divideEx(A,B); } outLen = A.S.NumberOfElements; if (A.TryGetStorage4InplaceOp(out retArr)) mode = BinOpItMode.AAIA; else if (B.TryGetStorage4InplaceOp(out retArr)) mode = BinOpItMode.AAIB; else { retArr = ILMemoryPool.Pool.New< fcomplex > (outLen); mode = BinOpItMode.AAN; } } } #endregion ILDenseStorage retStorage = new ILDenseStorage(retArr, outDims); int i = 0, workerCount = 1; Action worker = data => { Tuple range = (Tuple)data; fcomplex* cp = (fcomplex*)range.Item5 + range.Item1; fcomplex scalar; int j = range.Item2; #region loops switch (mode) { case BinOpItMode.AAIA: fcomplex* bp = ((fcomplex*)range.Item4 + range.Item1); while (j > 20) { cp[0] = (cp[0] / bp[0]); cp[1] = (cp[1] / bp[1]); cp[2] = (cp[2] / bp[2]); cp[3] = (cp[3] / bp[3]); cp[4] = (cp[4] / bp[4]); cp[5] = (cp[5] / bp[5]); cp[6] = (cp[6] / bp[6]); cp[7] = (cp[7] / bp[7]); cp[8] = (cp[8] / bp[8]); cp[9] = (cp[9] / bp[9]); cp[10] = (cp[10] / bp[10]); cp[11] = (cp[11] / bp[11]); cp[12] = (cp[12] / bp[12]); cp[13] = (cp[13] / bp[13]); cp[14] = (cp[14] / bp[14]); cp[15] = (cp[15] / bp[15]); cp[16] = (cp[16] / bp[16]); cp[17] = (cp[17] / bp[17]); cp[18] = (cp[18] / bp[18]); cp[19] = (cp[19] / bp[19]); cp[20] = (cp[20] / bp[20]); cp += 21; bp += 21; j -= 21; } while (j --> 0) { *cp = (*cp / *bp); cp++; bp++; } break; case BinOpItMode.AAIB: fcomplex* ap = ((fcomplex*)range.Item3 + range.Item1); while (j > 20) { cp[0] = (ap[0] / cp[0]); cp[1] = (ap[1] / cp[1]); cp[2] = (ap[2] / cp[2]); cp[3] = (ap[3] / cp[3]); cp[4] = (ap[4] / cp[4]); cp[5] = (ap[5] / cp[5]); cp[6] = (ap[6] / cp[6]); cp[7] = (ap[7] / cp[7]); cp[8] = (ap[8] / cp[8]); cp[9] = (ap[9] / cp[9]); cp[10] = (ap[10] / cp[10]); cp[11] = (ap[11] / cp[11]); cp[12] = (ap[12] / cp[12]); cp[13] = (ap[13] / cp[13]); cp[14] = (ap[14] / cp[14]); cp[15] = (ap[15] / cp[15]); cp[16] = (ap[16] / cp[16]); cp[17] = (ap[17] / cp[17]); cp[18] = (ap[18] / cp[18]); cp[19] = (ap[19] / cp[19]); cp[20] = (ap[20] / cp[20]); ap += 21; cp += 21; j -= 21; } while (j --> 0) { *cp = (*ap / *cp); ap++; cp++; } break; case BinOpItMode.AAN: ap = ((fcomplex*)range.Item3 + range.Item1); bp = ((fcomplex*)range.Item4 + range.Item1); while (j > 20) { cp[0] = (ap[0] / bp[0]); cp[1] = (ap[1] / bp[1]); cp[2] = (ap[2] / bp[2]); cp[3] = (ap[3] / bp[3]); cp[4] = (ap[4] / bp[4]); cp[5] = (ap[5] / bp[5]); cp[6] = (ap[6] / bp[6]); cp[7] = (ap[7] / bp[7]); cp[8] = (ap[8] / bp[8]); cp[9] = (ap[9] / bp[9]); cp[10] = (ap[10] / bp[10]); cp[11] = (ap[11] / bp[11]); cp[12] = (ap[12] / bp[12]); cp[13] = (ap[13] / bp[13]); cp[14] = (ap[14] / bp[14]); cp[15] = (ap[15] / bp[15]); cp[16] = (ap[16] / bp[16]); cp[17] = (ap[17] / bp[17]); cp[18] = (ap[18] / bp[18]); cp[19] = (ap[19] / bp[19]); cp[20] = (ap[20] / bp[20]); ap+=21; bp+=21; cp+=21; j-=21; } while (j --> 0) { *cp = (*ap / *bp); ap++; bp++; cp++; } break; case BinOpItMode.ASI: scalar = *((fcomplex*)range.Item4); while (j > 20) { cp[0] = (cp[0] / scalar); cp[1] = (cp[1] / scalar); cp[2] = (cp[2] / scalar); cp[3] = (cp[3] / scalar); cp[4] = (cp[4] / scalar); cp[5] = (cp[5] / scalar); cp[6] = (cp[6] / scalar); cp[7] = (cp[7] / scalar); cp[8] = (cp[8] / scalar); cp[9] = (cp[9] / scalar); cp[10] = (cp[10] / scalar); cp[11] = (cp[11] / scalar); cp[12] = (cp[12] / scalar); cp[13] = (cp[13] / scalar); cp[14] = (cp[14] / scalar); cp[15] = (cp[15] / scalar); cp[16] = (cp[16] / scalar); cp[17] = (cp[17] / scalar); cp[18] = (cp[18] / scalar); cp[19] = (cp[19] / scalar); cp[20] = (cp[20] / scalar); cp += 21; j -= 21; } while (j --> 0) { *cp = (*cp / scalar); cp++; } break; case BinOpItMode.ASN: ap = ((fcomplex*)range.Item3 + range.Item1); scalar = *((fcomplex*)range.Item4); while (j > 20) { cp[0] = (ap[0] / scalar); cp[1] = (ap[1] / scalar); cp[2] = (ap[2] / scalar); cp[3] = (ap[3] / scalar); cp[4] = (ap[4] / scalar); cp[5] = (ap[5] / scalar); cp[6] = (ap[6] / scalar); cp[7] = (ap[7] / scalar); cp[8] = (ap[8] / scalar); cp[9] = (ap[9] / scalar); cp[10] = (ap[10] / scalar); cp[11] = (ap[11] / scalar); cp[12] = (ap[12] / scalar); cp[13] = (ap[13] / scalar); cp[14] = (ap[14] / scalar); cp[15] = (ap[15] / scalar); cp[16] = (ap[16] / scalar); cp[17] = (ap[17] / scalar); cp[18] = (ap[18] / scalar); cp[19] = (ap[19] / scalar); cp[20] = (ap[20] / scalar); ap+=21; cp+=21; j -= 21; } while (j --> 0) { *cp = (*ap / scalar); ap++; cp++; } break; case BinOpItMode.SAI: scalar = *((fcomplex*)range.Item3); while (j > 20) { cp[0] = (scalar / cp[0]); cp[1] = (scalar / cp[1]); cp[2] = (scalar / cp[2]); cp[3] = (scalar / cp[3]); cp[4] = (scalar / cp[4]); cp[5] = (scalar / cp[5]); cp[6] = (scalar / cp[6]); cp[7] = (scalar / cp[7]); cp[8] = (scalar / cp[8]); cp[9] = (scalar / cp[9]); cp[10] = (scalar / cp[10]); cp[11] = (scalar / cp[11]); cp[12] = (scalar / cp[12]); cp[13] = (scalar / cp[13]); cp[14] = (scalar / cp[14]); cp[15] = (scalar / cp[15]); cp[16] = (scalar / cp[16]); cp[17] = (scalar / cp[17]); cp[18] = (scalar / cp[18]); cp[19] = (scalar / cp[19]); cp[20] = (scalar / cp[20]); cp += 21; j -= 21; } while (j --> 0) { *cp = (scalar / *cp); cp++; } break; case BinOpItMode.SAN: scalar = *((fcomplex*)range.Item3); bp = ((fcomplex*)range.Item4 + range.Item1); while (j > 20) { cp[0] = (scalar / bp[0]); cp[1] = (scalar / bp[1]); cp[2] = (scalar / bp[2]); cp[3] = (scalar / bp[3]); cp[4] = (scalar / bp[4]); cp[5] = (scalar / bp[5]); cp[6] = (scalar / bp[6]); cp[7] = (scalar / bp[7]); cp[8] = (scalar / bp[8]); cp[9] = (scalar / bp[9]); cp[10] = (scalar / bp[10]); cp[11] = (scalar / bp[11]); cp[12] = (scalar / bp[12]); cp[13] = (scalar / bp[13]); cp[14] = (scalar / bp[14]); cp[15] = (scalar / bp[15]); cp[16] = (scalar / bp[16]); cp[17] = (scalar / bp[17]); cp[18] = (scalar / bp[18]); cp[19] = (scalar / bp[19]); cp[20] = (scalar / bp[20]); bp+=21; cp+=21; j -= 21; } while (j --> 0) { *cp = (scalar / *bp); bp++; cp++; } break; default: break; } #endregion System.Threading.Interlocked.Decrement(ref workerCount); //retStorage.PendingEvents.Signal(); }; #region do the work int workItemCount = Settings.s_maxNumberThreads, workItemLength; if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) { if (outLen / workItemCount > Settings.s_minParallelElement1Count) { workItemLength = outLen / workItemCount; //workItemLength = (int)((double)outLen / workItemCount * 1.05); } else { workItemLength = outLen / 2; workItemCount = 2; } } else { workItemLength = outLen; workItemCount = 1; } fixed ( fcomplex* arrAP = arrA) fixed ( fcomplex* arrBP = arrB) fixed ( fcomplex* retArrP = retArr) { for (; i < workItemCount - 1; i++) { Tuple range = new Tuple (i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode); System.Threading.Interlocked.Increment(ref workerCount); ILThreadPool.QueueUserWorkItem(i, worker, range); } // the last (or may the only) chunk is done right here //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks); worker(new Tuple (i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode)); ILThreadPool.Wait4Workers(ref workerCount); } #endregion return new ILRetArray< fcomplex>(retStorage); } } private static unsafe ILRetArray divideEx(ILInArray A, ILInArray B) { //using (ILScope.Enter(A, B)) { we cannot start a new scope here, since this would prevent A and B to be used implace if applicable #region parameter checking if (isnull(A) || isnull(B)) return empty(ILSize.Empty00); if (A.IsEmpty) { return empty(B.S); } else if (B.IsEmpty) { return empty(A.S); } //if (A.IsScalar || B.IsScalar || A.D.IsSameSize(B.D)) // return add(A,B); int dim = -1; for (int l = 0; l < Math.Max(A.S.NumberOfDimensions, B.S.NumberOfDimensions); l++) { if (A.S[l] != B.S[l]) { if (dim >= 0 || (A.S[l] != 1 && B.S[l] != 1)) { throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B"); } dim = l; } } if (dim > 1) throw new ILArgumentException("singleton dimension expansion currently is only supported for colum- and row vectors"); dim = -(dim - 1); // 0 -> 1, 1 -> 0 #endregion #region parameter preparation fcomplex[] retArr; fcomplex[] arrA = A.GetArrayForRead(); fcomplex[] arrB = B.GetArrayForRead(); ILSize outDims; BinOptItExMode mode; int workItemMultiplierLenA; int workItemMultiplierLenB; if (A.IsVector) { outDims = B.S; if (!B.TryGetStorage4InplaceOp(out retArr)) { retArr = ILMemoryPool.Pool.New(outDims.NumberOfElements); mode = BinOptItExMode.VAN; } else { mode = BinOptItExMode.VAI; } workItemMultiplierLenB = outDims[0]; workItemMultiplierLenA = dim; // 0 for column, 1 for row vector } else if (B.IsVector) { outDims = A.S; if (!A.TryGetStorage4InplaceOp(out retArr)) { retArr = ILMemoryPool.Pool.New(outDims.NumberOfElements); mode = BinOptItExMode.AVN; } else { mode = BinOptItExMode.AVI; } workItemMultiplierLenB = dim; // 0 for column, 1 for row vector workItemMultiplierLenA = outDims[0]; } else { throw new ILArgumentException("A and B must have the same size except for one singleton dimension in either A or B"); } int itLen = outDims[0]; // (dim == 0) ? outDims.SequentialIndexDistance(1) : outDims.SequentialIndexDistance(0); #endregion #region worker loops definition ILDenseStorage retStorage = new ILDenseStorage(retArr, outDims); int workerCount = 1; Action worker = data => { // expects: iStart, iLen, ap, bp, cp Tuple range = (Tuple)data; fcomplex* ap; fcomplex* bp; fcomplex* cp; switch (mode) { case BinOptItExMode.VAN: if (dim == 0) { bp = (fcomplex*)range.Item3; cp = (fcomplex*)range.Item4; for (int s = 0; s < range.Item1; s++) { ap = (fcomplex*)range.Item2; int l = itLen; while (l > 10) { cp[0] = (ap[0] / bp[0]); cp[1] = (ap[1] / bp[1]); cp[2] = (ap[2] / bp[2]); cp[3] = (ap[3] / bp[3]); cp[4] = (ap[4] / bp[4]); cp[5] = (ap[5] / bp[5]); cp[6] = (ap[6] / bp[6]); cp[7] = (ap[7] / bp[7]); cp[8] = (ap[8] / bp[8]); cp[9] = (ap[9] / bp[9]); cp[10] = (ap[10] / bp[10]); ap += 11; bp += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp++ = (*ap++ / *bp++); } } } else { // dim == 1 ap = (fcomplex*)range.Item2; bp = (fcomplex*)range.Item3; cp = (fcomplex*)range.Item4; for (int s = 0; s < range.Item1; s++) { fcomplex val = *ap++; int l = itLen; while (l > 10) { cp[0] = (val / bp[0]); cp[1] = (val / bp[1]); cp[2] = (val / bp[2]); cp[3] = (val / bp[3]); cp[4] = (val / bp[4]); cp[5] = (val / bp[5]); cp[6] = (val / bp[6]); cp[7] = (val / bp[7]); cp[8] = (val / bp[8]); cp[9] = (val / bp[9]); cp[10] = (val / bp[10]); bp += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp++ = (val / *bp++); } } } break; case BinOptItExMode.VAI: if (dim == 0) { cp = (fcomplex*)range.Item4; for (int s = 0; s < range.Item1; s++) { ap = (fcomplex*)range.Item2; int l = itLen; while (l > 10) { cp[0] = (ap[0] / cp[0]); cp[1] = (ap[1] / cp[1]); cp[2] = (ap[2] / cp[2]); cp[3] = (ap[3] / cp[3]); cp[4] = (ap[4] / cp[4]); cp[5] = (ap[5] / cp[5]); cp[6] = (ap[6] / cp[6]); cp[7] = (ap[7] / cp[7]); cp[8] = (ap[8] / cp[8]); cp[9] = (ap[9] / cp[9]); cp[10] = (ap[10] / cp[10]); ap += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp = (*ap++ / *cp); cp++; } } } else { // dim == 1 cp = (fcomplex*)range.Item4; ap = (fcomplex*)range.Item2; for (int s = 0; s < range.Item1; s++) { fcomplex val = *ap++; int l = itLen; while (l > 10) { cp[0] = (val / cp[0]); cp[1] = (val / cp[1]); cp[2] = (val / cp[2]); cp[3] = (val / cp[3]); cp[4] = (val / cp[4]); cp[5] = (val / cp[5]); cp[6] = (val / cp[6]); cp[7] = (val / cp[7]); cp[8] = (val / cp[8]); cp[9] = (val / cp[9]); cp[10] = (val / cp[10]); cp += 11; l -= 11; } while (l-- > 0) { *cp = (val / *cp); cp++; } } } break; case BinOptItExMode.AVN: if (dim == 0) { ap = (fcomplex*)range.Item2; cp = (fcomplex*)range.Item4; for (int s = 0; s < range.Item1; s++) { bp = (fcomplex*)range.Item3; int l = itLen; while (l > 10) { cp[0] = (ap[0] / bp[0]); cp[1] = (ap[1] / bp[1]); cp[2] = (ap[2] / bp[2]); cp[3] = (ap[3] / bp[3]); cp[4] = (ap[4] / bp[4]); cp[5] = (ap[5] / bp[5]); cp[6] = (ap[6] / bp[6]); cp[7] = (ap[7] / bp[7]); cp[8] = (ap[8] / bp[8]); cp[9] = (ap[9] / bp[9]); cp[10] = (ap[10] / bp[10]); ap += 11; bp += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp = (*ap / *bp); ap++; bp++; cp++; } } } else { // dim = 1 ap = (fcomplex*)range.Item2; bp = (fcomplex*)range.Item3; cp = (fcomplex*)range.Item4; for (int s = 0; s < range.Item1; s++) { fcomplex val = *bp++; int l = itLen; while (l > 10) { cp[0] = (ap[0] / val); cp[1] = (ap[1] / val); cp[2] = (ap[2] / val); cp[3] = (ap[3] / val); cp[4] = (ap[4] / val); cp[5] = (ap[5] / val); cp[6] = (ap[6] / val); cp[7] = (ap[7] / val); cp[8] = (ap[8] / val); cp[9] = (ap[9] / val); cp[10] = (ap[10] / val); ap += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp = (*ap / val); ap++; cp++; } } } break; case BinOptItExMode.AVI: if (dim == 0) { cp = (fcomplex*)range.Item4; for (int s = 0; s < range.Item1; s++) { bp = (fcomplex*)range.Item3; int l = itLen; while (l > 10) { cp[0] = (cp[0] / bp[0]); cp[1] = (cp[1] / bp[1]); cp[2] = (cp[2] / bp[2]); cp[3] = (cp[3] / bp[3]); cp[4] = (cp[4] / bp[4]); cp[5] = (cp[5] / bp[5]); cp[6] = (cp[6] / bp[6]); cp[7] = (cp[7] / bp[7]); cp[8] = (cp[8] / bp[8]); cp[9] = (cp[9] / bp[9]); cp[10] = (cp[10] / bp[10]); bp += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp = (*cp / *bp); bp++; cp++; } } } else { // dim = 1 bp = (fcomplex*)range.Item3; cp = (fcomplex*)range.Item4; for (int s = 0; s < range.Item1; s++) { fcomplex val = *bp++; int l = itLen; while (l > 10) { cp[0] = (cp[0] / val); cp[1] = (cp[1] / val); cp[2] = (cp[2] / val); cp[3] = (cp[3] / val); cp[4] = (cp[4] / val); cp[5] = (cp[5] / val); cp[6] = (cp[6] / val); cp[7] = (cp[7] / val); cp[8] = (cp[8] / val); cp[9] = (cp[9] / val); cp[10] = (cp[10] / val); cp += 11; l -= 11; } while (l --> 0) { *cp = (*cp / val); cp++; } } } break; } System.Threading.Interlocked.Decrement(ref workerCount); }; #endregion #region work distribution int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength; if (Settings.s_maxNumberThreads > 1 && outDims.NumberOfElements >= Settings.s_minParallelElement1Count && outDims[1] > 1) { if (outDims[1] > workItemCount) { workItemLength = outDims[1] / workItemCount; } else { workItemLength = outDims[1] / 2; workItemCount = 2; } } else { workItemLength = outDims[1]; workItemCount = 1; } fixed ( fcomplex* arrAP = arrA) fixed ( fcomplex* arrBP = arrB) fixed ( fcomplex* retArrP = retArr) { for (; i < workItemCount - 1; i++) { Tuple range = new Tuple (workItemLength , (IntPtr)(arrAP + i * workItemMultiplierLenA * workItemLength) , (IntPtr)(arrBP + i * workItemMultiplierLenB * workItemLength) , (IntPtr)(retArrP + i * outDims[0] * workItemLength)); System.Threading.Interlocked.Increment(ref workerCount); ILThreadPool.QueueUserWorkItem(i, worker, range); } // the last (or may the only) chunk is done right here //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks); worker(new Tuple (outDims[1] - i * workItemLength , (IntPtr)(arrAP + i * workItemMultiplierLenA * workItemLength) , (IntPtr)(arrBP + i * workItemMultiplierLenB * workItemLength) , (IntPtr)(retArrP + i * outDims[0] * workItemLength))); ILThreadPool.Wait4Workers(ref workerCount); } #endregion return new ILRetArray(retStorage); //} // no scopes here! it disables implace operations } /// Divide elements /// Input array A /// Input array B /// Array with elementwise division of A and B /// On empty input an empty array will be returned. /// A and/or B may be scalar. The scalar value will be applied on all elements of the /// other array. /// If A or B is a colum vector and the other parameter is an array with a matching colum length, the vector is used to operate on all columns of the array. /// Similar, if one parameter is a row vector, it is used to operate along the rows of the other array if its number of columns matches the vector length. This feature /// can be used to replace the (costly) repmat function for most binary operators. /// For all other cases the dimensions of A and B must match. /// If the size of both arrays does not match any parameter rule. public unsafe static ILRetArray divide(ILInArray A, ILInArray B) { using (ILScope.Enter(A,B)) { int outLen; BinOpItMode mode; complex [] retArr; complex [] arrA = A.GetArrayForRead(); complex[] arrB = B.GetArrayForRead(); ILSize outDims; #region determine operation mode if (A.IsScalar) { outDims = B.Size; if (B.IsScalar) { return new ILRetArray (new complex [1]{ (A.GetValue(0) / B.GetValue(0))}, A.Size); } else if (B.IsEmpty) { return ILRetArray.empty(outDims); } else { outLen = outDims.NumberOfElements; if (!B.TryGetStorage4InplaceOp(out retArr)) { retArr = ILMemoryPool.Pool.New< complex > (outLen); mode = BinOpItMode.SAN; } else { mode = BinOpItMode.SAI; } } } else { outDims = A.Size; if (B.IsScalar) { if (A.IsEmpty) { return ILRetArray.empty(A.Size); } outLen = A.S.NumberOfElements; if (!A.TryGetStorage4InplaceOp(out retArr)) { retArr = ILMemoryPool.Pool.New< complex > (outLen); mode = BinOpItMode.ASN; } else { mode = BinOpItMode.ASI; } } else { // array + array if (!A.Size.IsSameSize(B.Size)) { return divideEx(A,B); } outLen = A.S.NumberOfElements; if (A.TryGetStorage4InplaceOp(out retArr)) mode = BinOpItMode.AAIA; else if (B.TryGetStorage4InplaceOp(out retArr)) mode = BinOpItMode.AAIB; else { retArr = ILMemoryPool.Pool.New< complex > (outLen); mode = BinOpItMode.AAN; } } } #endregion ILDenseStorage retStorage = new ILDenseStorage(retArr, outDims); int i = 0, workerCount = 1; Action worker = data => { Tuple range = (Tuple)data; complex* cp = (complex*)range.Item5 + range.Item1; complex scalar; int j = range.Item2; #region loops switch (mode) { case BinOpItMode.AAIA: complex* bp = ((complex*)range.Item4 + range.Item1); while (j > 20) { cp[0] = (cp[0] / bp[0]); cp[1] = (cp[1] / bp[1]); cp[2] = (cp[2] / bp[2]); cp[3] = (cp[3] / bp[3]); cp[4] = (cp[4] / bp[4]); cp[5] = (cp[5] / bp[5]); cp[6] = (cp[6] / bp[6]); cp[7] = (cp[7] / bp[7]); cp[8] = (cp[8] / bp[8]); cp[9] = (cp[9] / bp[9]); cp[10] = (cp[10] / bp[10]); cp[11] = (cp[11] / bp[11]); cp[12] = (cp[12] / bp[12]); cp[13] = (cp[13] / bp[13]); cp[14] = (cp[14] / bp[14]); cp[15] = (cp[15] / bp[15]); cp[16] = (cp[16] / bp[16]); cp[17] = (cp[17] / bp[17]); cp[18] = (cp[18] / bp[18]); cp[19] = (cp[19] / bp[19]); cp[20] = (cp[20] / bp[20]); cp += 21; bp += 21; j -= 21; } while (j --> 0) { *cp = (*cp / *bp); cp++; bp++; } break; case BinOpItMode.AAIB: complex* ap = ((complex*)range.Item3 + range.Item1); while (j > 20) { cp[0] = (ap[0] / cp[0]); cp[1] = (ap[1] / cp[1]); cp[2] = (ap[2] / cp[2]); cp[3] = (ap[3] / cp[3]); cp[4] = (ap[4] / cp[4]); cp[5] = (ap[5] / cp[5]); cp[6] = (ap[6] / cp[6]); cp[7] = (ap[7] / cp[7]); cp[8] = (ap[8] / cp[8]); cp[9] = (ap[9] / cp[9]); cp[10] = (ap[10] / cp[10]); cp[11] = (ap[11] / cp[11]); cp[12] = (ap[12] / cp[12]); cp[13] = (ap[13] / cp[13]); cp[14] = (ap[14] / cp[14]); cp[15] = (ap[15] / cp[15]); cp[16] = (ap[16] / cp[16]); cp[17] = (ap[17] / cp[17]); cp[18] = (ap[18] / cp[18]); cp[19] = (ap[19] / cp[19]); cp[20] = (ap[20] / cp[20]); ap += 21; cp += 21; j -= 21; } while (j --> 0) { *cp = (*ap / *cp); ap++; cp++; } break; case BinOpItMode.AAN: ap = ((complex*)range.Item3 + range.Item1); bp = ((complex*)range.Item4 + range.Item1); while (j > 20) { cp[0] = (ap[0] / bp[0]); cp[1] = (ap[1] / bp[1]); cp[2] = (ap[2] / bp[2]); cp[3] = (ap[3] / bp[3]); cp[4] = (ap[4] / bp[4]); cp[5] = (ap[5] / bp[5]); cp[6] = (ap[6] / bp[6]); cp[7] = (ap[7] / bp[7]); cp[8] = (ap[8] / bp[8]); cp[9] = (ap[9] / bp[9]); cp[10] = (ap[10] / bp[10]); cp[11] = (ap[11] / bp[11]); cp[12] = (ap[12] / bp[12]); cp[13] = (ap[13] / bp[13]); cp[14] = (ap[14] / bp[14]); cp[15] = (ap[15] / bp[15]); cp[16] = (ap[16] / bp[16]); cp[17] = (ap[17] / bp[17]); cp[18] = (ap[18] / bp[18]); cp[19] = (ap[19] / bp[19]); cp[20] = (ap[20] / bp[20]); ap+=21; bp+=21; cp+=21; j-=21; } while (j --> 0) { *cp = (*ap / *bp); ap++; bp++; cp++; } break; case BinOpItMode.ASI: scalar = *((complex*)range.Item4); while (j > 20) { cp[0] = (cp[0] / scalar); cp[1] = (cp[1] / scalar); cp[2] = (cp[2] / scalar); cp[3] = (cp[3] / scalar); cp[4] = (cp[4] / scalar); cp[5] = (cp[5] / scalar); cp[6] = (cp[6] / scalar); cp[7] = (cp[7] / scalar); cp[8] = (cp[8] / scalar); cp[9] = (cp[9] / scalar); cp[10] = (cp[10] / scalar); cp[11] = (cp[11] / scalar); cp[12] = (cp[12] / scalar); cp[13] = (cp[13] / scalar); cp[14] = (cp[14] / scalar); cp[15] = (cp[15] / scalar); cp[16] = (cp[16] / scalar); cp[17] = (cp[17] / scalar); cp[18] = (cp[18] / scalar); cp[19] = (cp[19] / scalar); cp[20] = (cp[20] / scalar); cp += 21; j -= 21; } while (j --> 0) { *cp = (*cp / scalar); cp++; } break; case BinOpItMode.ASN: ap = ((complex*)range.Item3 + range.Item1); scalar = *((complex*)range.Item4); while (j > 20) { cp[0] = (ap[0] / scalar); cp[1] = (ap[1] / scalar); cp[2] = (ap[2] / scalar); cp[3] = (ap[3] / scalar); cp[4] = (ap[4] / scalar); cp[5] = (ap[5] / scalar); cp[6] = (ap[6] / scalar); cp[7] = (ap[7] / scalar); cp[8] = (ap[8] / scalar); cp[9] = (ap[9] / scalar); cp[10] = (ap[10] / scalar); cp[11] = (ap[11] / scalar); cp[12] = (ap[12] / scalar); cp[13] = (ap[13] / scalar); cp[14] = (ap[14] / scalar); cp[15] = (ap[15] / scalar); cp[16] = (ap[16] / scalar); cp[17] = (ap[17] / scalar); cp[18] = (ap[18] / scalar); cp[19] = (ap[19] / scalar); cp[20] = (ap[20] / scalar); ap+=21; cp+=21; j -= 21; } while (j --> 0) { *cp = (*ap / scalar); ap++; cp++; } break; case BinOpItMode.SAI: scalar = *((complex*)range.Item3); while (j > 20) { cp[0] = (scalar / cp[0]); cp[1] = (scalar / cp[1]); cp[2] = (scalar / cp[2]); cp[3] = (scalar / cp[3]); cp[4] = (scalar / cp[4]); cp[5] = (scalar / cp[5]); cp[6] = (scalar / cp[6]); cp[7] = (scalar / cp[7]); cp[8] = (scalar / cp[8]); cp[9] = (scalar / cp[9]); cp[10] = (scalar / cp[10]); cp[11] = (scalar / cp[11]); cp[12] = (scalar / cp[12]); cp[13] = (scalar / cp[13]); cp[14] = (scalar / cp[14]); cp[15] = (scalar / cp[15]); cp[16] = (scalar / cp[16]); cp[17] = (scalar / cp[17]); cp[18] = (scalar / cp[18]); cp[19] = (scalar / cp[19]); cp[20] = (scalar / cp[20]); cp += 21; j -= 21; } while (j --> 0) { *cp = (scalar / *cp); cp++; } break; case BinOpItMode.SAN: scalar = *((complex*)range.Item3); bp = ((complex*)range.Item4 + range.Item1); while (j > 20) { cp[0] = (scalar / bp[0]); cp[1] = (scalar / bp[1]); cp[2] = (scalar / bp[2]); cp[3] = (scalar / bp[3]); cp[4] = (scalar / bp[4]); cp[5] = (scalar / bp[5]); cp[6] = (scalar / bp[6]); cp[7] = (scalar / bp[7]); cp[8] = (scalar / bp[8]); cp[9] = (scalar / bp[9]); cp[10] = (scalar / bp[10]); cp[11] = (scalar / bp[11]); cp[12] = (scalar / bp[12]); cp[13] = (scalar / bp[13]); cp[14] = (scalar / bp[14]); cp[15] = (scalar / bp[15]); cp[16] = (scalar / bp[16]); cp[17] = (scalar / bp[17]); cp[18] = (scalar / bp[18]); cp[19] = (scalar / bp[19]); cp[20] = (scalar / bp[20]); bp+=21; cp+=21; j -= 21; } while (j --> 0) { *cp = (scalar / *bp); bp++; cp++; } break; default: break; } #endregion System.Threading.Interlocked.Decrement(ref workerCount); //retStorage.PendingEvents.Signal(); }; #region do the work int workItemCount = Settings.s_maxNumberThreads, workItemLength; if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) { if (outLen / workItemCount > Settings.s_minParallelElement1Count) { workItemLength = outLen / workItemCount; //workItemLength = (int)((double)outLen / workItemCount * 1.05); } else { workItemLength = outLen / 2; workItemCount = 2; } } else { workItemLength = outLen; workItemCount = 1; } fixed ( complex* arrAP = arrA) fixed ( complex* arrBP = arrB) fixed ( complex* retArrP = retArr) { for (; i < workItemCount - 1; i++) { Tuple range = new Tuple (i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode); System.Threading.Interlocked.Increment(ref workerCount); ILThreadPool.QueueUserWorkItem(i, worker, range); } // the last (or may the only) chunk is done right here //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks); worker(new Tuple (i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode)); ILThreadPool.Wait4Workers(ref workerCount); } #endregion return new ILRetArray< complex>(retStorage); } } private static unsafe ILRetArray divideEx(ILInArray A, ILInArray B) { //using (ILScope.Enter(A, B)) { we cannot start a new scope here, since this would prevent A and B to be used implace if applicable #region parameter checking if (isnull(A) || isnull(B)) return empty(ILSize.Empty00); if (A.IsEmpty) { return empty(B.S); } else if (B.IsEmpty) { return empty(A.S); } //if (A.IsScalar || B.IsScalar || A.D.IsSameSize(B.D)) // return add(A,B); int dim = -1; for (int l = 0; l < Math.Max(A.S.NumberOfDimensions, B.S.NumberOfDimensions); l++) { if (A.S[l] != B.S[l]) { if (dim >= 0 || (A.S[l] != 1 && B.S[l] != 1)) { throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B"); } dim = l; } } if (dim > 1) throw new ILArgumentException("singleton dimension expansion currently is only supported for colum- and row vectors"); dim = -(dim - 1); // 0 -> 1, 1 -> 0 #endregion #region parameter preparation complex[] retArr; complex[] arrA = A.GetArrayForRead(); complex[] arrB = B.GetArrayForRead(); ILSize outDims; BinOptItExMode mode; int workItemMultiplierLenA; int workItemMultiplierLenB; if (A.IsVector) { outDims = B.S; if (!B.TryGetStorage4InplaceOp(out retArr)) { retArr = ILMemoryPool.Pool.New(outDims.NumberOfElements); mode = BinOptItExMode.VAN; } else { mode = BinOptItExMode.VAI; } workItemMultiplierLenB = outDims[0]; workItemMultiplierLenA = dim; // 0 for column, 1 for row vector } else if (B.IsVector) { outDims = A.S; if (!A.TryGetStorage4InplaceOp(out retArr)) { retArr = ILMemoryPool.Pool.New(outDims.NumberOfElements); mode = BinOptItExMode.AVN; } else { mode = BinOptItExMode.AVI; } workItemMultiplierLenB = dim; // 0 for column, 1 for row vector workItemMultiplierLenA = outDims[0]; } else { throw new ILArgumentException("A and B must have the same size except for one singleton dimension in either A or B"); } int itLen = outDims[0]; // (dim == 0) ? outDims.SequentialIndexDistance(1) : outDims.SequentialIndexDistance(0); #endregion #region worker loops definition ILDenseStorage retStorage = new ILDenseStorage(retArr, outDims); int workerCount = 1; Action worker = data => { // expects: iStart, iLen, ap, bp, cp Tuple range = (Tuple)data; complex* ap; complex* bp; complex* cp; switch (mode) { case BinOptItExMode.VAN: if (dim == 0) { bp = (complex*)range.Item3; cp = (complex*)range.Item4; for (int s = 0; s < range.Item1; s++) { ap = (complex*)range.Item2; int l = itLen; while (l > 10) { cp[0] = (ap[0] / bp[0]); cp[1] = (ap[1] / bp[1]); cp[2] = (ap[2] / bp[2]); cp[3] = (ap[3] / bp[3]); cp[4] = (ap[4] / bp[4]); cp[5] = (ap[5] / bp[5]); cp[6] = (ap[6] / bp[6]); cp[7] = (ap[7] / bp[7]); cp[8] = (ap[8] / bp[8]); cp[9] = (ap[9] / bp[9]); cp[10] = (ap[10] / bp[10]); ap += 11; bp += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp++ = (*ap++ / *bp++); } } } else { // dim == 1 ap = (complex*)range.Item2; bp = (complex*)range.Item3; cp = (complex*)range.Item4; for (int s = 0; s < range.Item1; s++) { complex val = *ap++; int l = itLen; while (l > 10) { cp[0] = (val / bp[0]); cp[1] = (val / bp[1]); cp[2] = (val / bp[2]); cp[3] = (val / bp[3]); cp[4] = (val / bp[4]); cp[5] = (val / bp[5]); cp[6] = (val / bp[6]); cp[7] = (val / bp[7]); cp[8] = (val / bp[8]); cp[9] = (val / bp[9]); cp[10] = (val / bp[10]); bp += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp++ = (val / *bp++); } } } break; case BinOptItExMode.VAI: if (dim == 0) { cp = (complex*)range.Item4; for (int s = 0; s < range.Item1; s++) { ap = (complex*)range.Item2; int l = itLen; while (l > 10) { cp[0] = (ap[0] / cp[0]); cp[1] = (ap[1] / cp[1]); cp[2] = (ap[2] / cp[2]); cp[3] = (ap[3] / cp[3]); cp[4] = (ap[4] / cp[4]); cp[5] = (ap[5] / cp[5]); cp[6] = (ap[6] / cp[6]); cp[7] = (ap[7] / cp[7]); cp[8] = (ap[8] / cp[8]); cp[9] = (ap[9] / cp[9]); cp[10] = (ap[10] / cp[10]); ap += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp = (*ap++ / *cp); cp++; } } } else { // dim == 1 cp = (complex*)range.Item4; ap = (complex*)range.Item2; for (int s = 0; s < range.Item1; s++) { complex val = *ap++; int l = itLen; while (l > 10) { cp[0] = (val / cp[0]); cp[1] = (val / cp[1]); cp[2] = (val / cp[2]); cp[3] = (val / cp[3]); cp[4] = (val / cp[4]); cp[5] = (val / cp[5]); cp[6] = (val / cp[6]); cp[7] = (val / cp[7]); cp[8] = (val / cp[8]); cp[9] = (val / cp[9]); cp[10] = (val / cp[10]); cp += 11; l -= 11; } while (l-- > 0) { *cp = (val / *cp); cp++; } } } break; case BinOptItExMode.AVN: if (dim == 0) { ap = (complex*)range.Item2; cp = (complex*)range.Item4; for (int s = 0; s < range.Item1; s++) { bp = (complex*)range.Item3; int l = itLen; while (l > 10) { cp[0] = (ap[0] / bp[0]); cp[1] = (ap[1] / bp[1]); cp[2] = (ap[2] / bp[2]); cp[3] = (ap[3] / bp[3]); cp[4] = (ap[4] / bp[4]); cp[5] = (ap[5] / bp[5]); cp[6] = (ap[6] / bp[6]); cp[7] = (ap[7] / bp[7]); cp[8] = (ap[8] / bp[8]); cp[9] = (ap[9] / bp[9]); cp[10] = (ap[10] / bp[10]); ap += 11; bp += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp = (*ap / *bp); ap++; bp++; cp++; } } } else { // dim = 1 ap = (complex*)range.Item2; bp = (complex*)range.Item3; cp = (complex*)range.Item4; for (int s = 0; s < range.Item1; s++) { complex val = *bp++; int l = itLen; while (l > 10) { cp[0] = (ap[0] / val); cp[1] = (ap[1] / val); cp[2] = (ap[2] / val); cp[3] = (ap[3] / val); cp[4] = (ap[4] / val); cp[5] = (ap[5] / val); cp[6] = (ap[6] / val); cp[7] = (ap[7] / val); cp[8] = (ap[8] / val); cp[9] = (ap[9] / val); cp[10] = (ap[10] / val); ap += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp = (*ap / val); ap++; cp++; } } } break; case BinOptItExMode.AVI: if (dim == 0) { cp = (complex*)range.Item4; for (int s = 0; s < range.Item1; s++) { bp = (complex*)range.Item3; int l = itLen; while (l > 10) { cp[0] = (cp[0] / bp[0]); cp[1] = (cp[1] / bp[1]); cp[2] = (cp[2] / bp[2]); cp[3] = (cp[3] / bp[3]); cp[4] = (cp[4] / bp[4]); cp[5] = (cp[5] / bp[5]); cp[6] = (cp[6] / bp[6]); cp[7] = (cp[7] / bp[7]); cp[8] = (cp[8] / bp[8]); cp[9] = (cp[9] / bp[9]); cp[10] = (cp[10] / bp[10]); bp += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp = (*cp / *bp); bp++; cp++; } } } else { // dim = 1 bp = (complex*)range.Item3; cp = (complex*)range.Item4; for (int s = 0; s < range.Item1; s++) { complex val = *bp++; int l = itLen; while (l > 10) { cp[0] = (cp[0] / val); cp[1] = (cp[1] / val); cp[2] = (cp[2] / val); cp[3] = (cp[3] / val); cp[4] = (cp[4] / val); cp[5] = (cp[5] / val); cp[6] = (cp[6] / val); cp[7] = (cp[7] / val); cp[8] = (cp[8] / val); cp[9] = (cp[9] / val); cp[10] = (cp[10] / val); cp += 11; l -= 11; } while (l --> 0) { *cp = (*cp / val); cp++; } } } break; } System.Threading.Interlocked.Decrement(ref workerCount); }; #endregion #region work distribution int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength; if (Settings.s_maxNumberThreads > 1 && outDims.NumberOfElements >= Settings.s_minParallelElement1Count && outDims[1] > 1) { if (outDims[1] > workItemCount) { workItemLength = outDims[1] / workItemCount; } else { workItemLength = outDims[1] / 2; workItemCount = 2; } } else { workItemLength = outDims[1]; workItemCount = 1; } fixed ( complex* arrAP = arrA) fixed ( complex* arrBP = arrB) fixed ( complex* retArrP = retArr) { for (; i < workItemCount - 1; i++) { Tuple range = new Tuple (workItemLength , (IntPtr)(arrAP + i * workItemMultiplierLenA * workItemLength) , (IntPtr)(arrBP + i * workItemMultiplierLenB * workItemLength) , (IntPtr)(retArrP + i * outDims[0] * workItemLength)); System.Threading.Interlocked.Increment(ref workerCount); ILThreadPool.QueueUserWorkItem(i, worker, range); } // the last (or may the only) chunk is done right here //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks); worker(new Tuple (outDims[1] - i * workItemLength , (IntPtr)(arrAP + i * workItemMultiplierLenA * workItemLength) , (IntPtr)(arrBP + i * workItemMultiplierLenB * workItemLength) , (IntPtr)(retArrP + i * outDims[0] * workItemLength))); ILThreadPool.Wait4Workers(ref workerCount); } #endregion return new ILRetArray(retStorage); //} // no scopes here! it disables implace operations } /// Divide elements /// Input array A /// Input array B /// Array with elementwise division of A and B /// On empty input an empty array will be returned. /// A and/or B may be scalar. The scalar value will be applied on all elements of the /// other array. /// If A or B is a colum vector and the other parameter is an array with a matching colum length, the vector is used to operate on all columns of the array. /// Similar, if one parameter is a row vector, it is used to operate along the rows of the other array if its number of columns matches the vector length. This feature /// can be used to replace the (costly) repmat function for most binary operators. /// For all other cases the dimensions of A and B must match. /// If the size of both arrays does not match any parameter rule. public unsafe static ILRetArray divide(ILInArray A, ILInArray B) { using (ILScope.Enter(A,B)) { int outLen; BinOpItMode mode; byte [] retArr; byte [] arrA = A.GetArrayForRead(); byte[] arrB = B.GetArrayForRead(); ILSize outDims; #region determine operation mode if (A.IsScalar) { outDims = B.Size; if (B.IsScalar) { return new ILRetArray (new byte [1]{ saturateByte (A.GetValue(0) / (double) B.GetValue(0))}, A.Size); } else if (B.IsEmpty) { return ILRetArray.empty(outDims); } else { outLen = outDims.NumberOfElements; if (!B.TryGetStorage4InplaceOp(out retArr)) { retArr = ILMemoryPool.Pool.New< byte > (outLen); mode = BinOpItMode.SAN; } else { mode = BinOpItMode.SAI; } } } else { outDims = A.Size; if (B.IsScalar) { if (A.IsEmpty) { return ILRetArray.empty(A.Size); } outLen = A.S.NumberOfElements; if (!A.TryGetStorage4InplaceOp(out retArr)) { retArr = ILMemoryPool.Pool.New< byte > (outLen); mode = BinOpItMode.ASN; } else { mode = BinOpItMode.ASI; } } else { // array + array if (!A.Size.IsSameSize(B.Size)) { return divideEx(A,B); } outLen = A.S.NumberOfElements; if (A.TryGetStorage4InplaceOp(out retArr)) mode = BinOpItMode.AAIA; else if (B.TryGetStorage4InplaceOp(out retArr)) mode = BinOpItMode.AAIB; else { retArr = ILMemoryPool.Pool.New< byte > (outLen); mode = BinOpItMode.AAN; } } } #endregion ILDenseStorage retStorage = new ILDenseStorage(retArr, outDims); int i = 0, workerCount = 1; Action worker = data => { Tuple range = (Tuple)data; byte* cp = (byte*)range.Item5 + range.Item1; byte scalar; int j = range.Item2; #region loops switch (mode) { case BinOpItMode.AAIA: byte* bp = ((byte*)range.Item4 + range.Item1); while (j > 20) { cp[0] = saturateByte (cp[0] / (double) bp[0]); cp[1] = saturateByte (cp[1] / (double) bp[1]); cp[2] = saturateByte (cp[2] / (double) bp[2]); cp[3] = saturateByte (cp[3] / (double) bp[3]); cp[4] = saturateByte (cp[4] / (double) bp[4]); cp[5] = saturateByte (cp[5] / (double) bp[5]); cp[6] = saturateByte (cp[6] / (double) bp[6]); cp[7] = saturateByte (cp[7] / (double) bp[7]); cp[8] = saturateByte (cp[8] / (double) bp[8]); cp[9] = saturateByte (cp[9] / (double) bp[9]); cp[10] = saturateByte (cp[10] / (double) bp[10]); cp[11] = saturateByte (cp[11] / (double) bp[11]); cp[12] = saturateByte (cp[12] / (double) bp[12]); cp[13] = saturateByte (cp[13] / (double) bp[13]); cp[14] = saturateByte (cp[14] / (double) bp[14]); cp[15] = saturateByte (cp[15] / (double) bp[15]); cp[16] = saturateByte (cp[16] / (double) bp[16]); cp[17] = saturateByte (cp[17] / (double) bp[17]); cp[18] = saturateByte (cp[18] / (double) bp[18]); cp[19] = saturateByte (cp[19] / (double) bp[19]); cp[20] = saturateByte (cp[20] / (double) bp[20]); cp += 21; bp += 21; j -= 21; } while (j --> 0) { *cp = saturateByte (*cp / (double) *bp); cp++; bp++; } break; case BinOpItMode.AAIB: byte* ap = ((byte*)range.Item3 + range.Item1); while (j > 20) { cp[0] = saturateByte (ap[0] / (double) cp[0]); cp[1] = saturateByte (ap[1] / (double) cp[1]); cp[2] = saturateByte (ap[2] / (double) cp[2]); cp[3] = saturateByte (ap[3] / (double) cp[3]); cp[4] = saturateByte (ap[4] / (double) cp[4]); cp[5] = saturateByte (ap[5] / (double) cp[5]); cp[6] = saturateByte (ap[6] / (double) cp[6]); cp[7] = saturateByte (ap[7] / (double) cp[7]); cp[8] = saturateByte (ap[8] / (double) cp[8]); cp[9] = saturateByte (ap[9] / (double) cp[9]); cp[10] = saturateByte (ap[10] / (double) cp[10]); cp[11] = saturateByte (ap[11] / (double) cp[11]); cp[12] = saturateByte (ap[12] / (double) cp[12]); cp[13] = saturateByte (ap[13] / (double) cp[13]); cp[14] = saturateByte (ap[14] / (double) cp[14]); cp[15] = saturateByte (ap[15] / (double) cp[15]); cp[16] = saturateByte (ap[16] / (double) cp[16]); cp[17] = saturateByte (ap[17] / (double) cp[17]); cp[18] = saturateByte (ap[18] / (double) cp[18]); cp[19] = saturateByte (ap[19] / (double) cp[19]); cp[20] = saturateByte (ap[20] / (double) cp[20]); ap += 21; cp += 21; j -= 21; } while (j --> 0) { *cp = saturateByte (*ap / (double) *cp); ap++; cp++; } break; case BinOpItMode.AAN: ap = ((byte*)range.Item3 + range.Item1); bp = ((byte*)range.Item4 + range.Item1); while (j > 20) { cp[0] = saturateByte (ap[0] / (double) bp[0]); cp[1] = saturateByte (ap[1] / (double) bp[1]); cp[2] = saturateByte (ap[2] / (double) bp[2]); cp[3] = saturateByte (ap[3] / (double) bp[3]); cp[4] = saturateByte (ap[4] / (double) bp[4]); cp[5] = saturateByte (ap[5] / (double) bp[5]); cp[6] = saturateByte (ap[6] / (double) bp[6]); cp[7] = saturateByte (ap[7] / (double) bp[7]); cp[8] = saturateByte (ap[8] / (double) bp[8]); cp[9] = saturateByte (ap[9] / (double) bp[9]); cp[10] = saturateByte (ap[10] / (double) bp[10]); cp[11] = saturateByte (ap[11] / (double) bp[11]); cp[12] = saturateByte (ap[12] / (double) bp[12]); cp[13] = saturateByte (ap[13] / (double) bp[13]); cp[14] = saturateByte (ap[14] / (double) bp[14]); cp[15] = saturateByte (ap[15] / (double) bp[15]); cp[16] = saturateByte (ap[16] / (double) bp[16]); cp[17] = saturateByte (ap[17] / (double) bp[17]); cp[18] = saturateByte (ap[18] / (double) bp[18]); cp[19] = saturateByte (ap[19] / (double) bp[19]); cp[20] = saturateByte (ap[20] / (double) bp[20]); ap+=21; bp+=21; cp+=21; j-=21; } while (j --> 0) { *cp = saturateByte (*ap / (double) *bp); ap++; bp++; cp++; } break; case BinOpItMode.ASI: scalar = *((byte*)range.Item4); while (j > 20) { cp[0] = saturateByte (cp[0] / (double) scalar); cp[1] = saturateByte (cp[1] / (double) scalar); cp[2] = saturateByte (cp[2] / (double) scalar); cp[3] = saturateByte (cp[3] / (double) scalar); cp[4] = saturateByte (cp[4] / (double) scalar); cp[5] = saturateByte (cp[5] / (double) scalar); cp[6] = saturateByte (cp[6] / (double) scalar); cp[7] = saturateByte (cp[7] / (double) scalar); cp[8] = saturateByte (cp[8] / (double) scalar); cp[9] = saturateByte (cp[9] / (double) scalar); cp[10] = saturateByte (cp[10] / (double) scalar); cp[11] = saturateByte (cp[11] / (double) scalar); cp[12] = saturateByte (cp[12] / (double) scalar); cp[13] = saturateByte (cp[13] / (double) scalar); cp[14] = saturateByte (cp[14] / (double) scalar); cp[15] = saturateByte (cp[15] / (double) scalar); cp[16] = saturateByte (cp[16] / (double) scalar); cp[17] = saturateByte (cp[17] / (double) scalar); cp[18] = saturateByte (cp[18] / (double) scalar); cp[19] = saturateByte (cp[19] / (double) scalar); cp[20] = saturateByte (cp[20] / (double) scalar); cp += 21; j -= 21; } while (j --> 0) { *cp = saturateByte (*cp / (double) scalar); cp++; } break; case BinOpItMode.ASN: ap = ((byte*)range.Item3 + range.Item1); scalar = *((byte*)range.Item4); while (j > 20) { cp[0] = saturateByte (ap[0] / (double) scalar); cp[1] = saturateByte (ap[1] / (double) scalar); cp[2] = saturateByte (ap[2] / (double) scalar); cp[3] = saturateByte (ap[3] / (double) scalar); cp[4] = saturateByte (ap[4] / (double) scalar); cp[5] = saturateByte (ap[5] / (double) scalar); cp[6] = saturateByte (ap[6] / (double) scalar); cp[7] = saturateByte (ap[7] / (double) scalar); cp[8] = saturateByte (ap[8] / (double) scalar); cp[9] = saturateByte (ap[9] / (double) scalar); cp[10] = saturateByte (ap[10] / (double) scalar); cp[11] = saturateByte (ap[11] / (double) scalar); cp[12] = saturateByte (ap[12] / (double) scalar); cp[13] = saturateByte (ap[13] / (double) scalar); cp[14] = saturateByte (ap[14] / (double) scalar); cp[15] = saturateByte (ap[15] / (double) scalar); cp[16] = saturateByte (ap[16] / (double) scalar); cp[17] = saturateByte (ap[17] / (double) scalar); cp[18] = saturateByte (ap[18] / (double) scalar); cp[19] = saturateByte (ap[19] / (double) scalar); cp[20] = saturateByte (ap[20] / (double) scalar); ap+=21; cp+=21; j -= 21; } while (j --> 0) { *cp = saturateByte (*ap / (double) scalar); ap++; cp++; } break; case BinOpItMode.SAI: scalar = *((byte*)range.Item3); while (j > 20) { cp[0] = saturateByte (scalar / (double) cp[0]); cp[1] = saturateByte (scalar / (double) cp[1]); cp[2] = saturateByte (scalar / (double) cp[2]); cp[3] = saturateByte (scalar / (double) cp[3]); cp[4] = saturateByte (scalar / (double) cp[4]); cp[5] = saturateByte (scalar / (double) cp[5]); cp[6] = saturateByte (scalar / (double) cp[6]); cp[7] = saturateByte (scalar / (double) cp[7]); cp[8] = saturateByte (scalar / (double) cp[8]); cp[9] = saturateByte (scalar / (double) cp[9]); cp[10] = saturateByte (scalar / (double) cp[10]); cp[11] = saturateByte (scalar / (double) cp[11]); cp[12] = saturateByte (scalar / (double) cp[12]); cp[13] = saturateByte (scalar / (double) cp[13]); cp[14] = saturateByte (scalar / (double) cp[14]); cp[15] = saturateByte (scalar / (double) cp[15]); cp[16] = saturateByte (scalar / (double) cp[16]); cp[17] = saturateByte (scalar / (double) cp[17]); cp[18] = saturateByte (scalar / (double) cp[18]); cp[19] = saturateByte (scalar / (double) cp[19]); cp[20] = saturateByte (scalar / (double) cp[20]); cp += 21; j -= 21; } while (j --> 0) { *cp = saturateByte (scalar / (double) *cp); cp++; } break; case BinOpItMode.SAN: scalar = *((byte*)range.Item3); bp = ((byte*)range.Item4 + range.Item1); while (j > 20) { cp[0] = saturateByte (scalar / (double) bp[0]); cp[1] = saturateByte (scalar / (double) bp[1]); cp[2] = saturateByte (scalar / (double) bp[2]); cp[3] = saturateByte (scalar / (double) bp[3]); cp[4] = saturateByte (scalar / (double) bp[4]); cp[5] = saturateByte (scalar / (double) bp[5]); cp[6] = saturateByte (scalar / (double) bp[6]); cp[7] = saturateByte (scalar / (double) bp[7]); cp[8] = saturateByte (scalar / (double) bp[8]); cp[9] = saturateByte (scalar / (double) bp[9]); cp[10] = saturateByte (scalar / (double) bp[10]); cp[11] = saturateByte (scalar / (double) bp[11]); cp[12] = saturateByte (scalar / (double) bp[12]); cp[13] = saturateByte (scalar / (double) bp[13]); cp[14] = saturateByte (scalar / (double) bp[14]); cp[15] = saturateByte (scalar / (double) bp[15]); cp[16] = saturateByte (scalar / (double) bp[16]); cp[17] = saturateByte (scalar / (double) bp[17]); cp[18] = saturateByte (scalar / (double) bp[18]); cp[19] = saturateByte (scalar / (double) bp[19]); cp[20] = saturateByte (scalar / (double) bp[20]); bp+=21; cp+=21; j -= 21; } while (j --> 0) { *cp = saturateByte (scalar / (double) *bp); bp++; cp++; } break; default: break; } #endregion System.Threading.Interlocked.Decrement(ref workerCount); //retStorage.PendingEvents.Signal(); }; #region do the work int workItemCount = Settings.s_maxNumberThreads, workItemLength; if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) { if (outLen / workItemCount > Settings.s_minParallelElement1Count) { workItemLength = outLen / workItemCount; //workItemLength = (int)((double)outLen / workItemCount * 1.05); } else { workItemLength = outLen / 2; workItemCount = 2; } } else { workItemLength = outLen; workItemCount = 1; } fixed ( byte* arrAP = arrA) fixed ( byte* arrBP = arrB) fixed ( byte* retArrP = retArr) { for (; i < workItemCount - 1; i++) { Tuple range = new Tuple (i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode); System.Threading.Interlocked.Increment(ref workerCount); ILThreadPool.QueueUserWorkItem(i, worker, range); } // the last (or may the only) chunk is done right here //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks); worker(new Tuple (i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode)); ILThreadPool.Wait4Workers(ref workerCount); } #endregion return new ILRetArray< byte>(retStorage); } } private static unsafe ILRetArray divideEx(ILInArray A, ILInArray B) { //using (ILScope.Enter(A, B)) { we cannot start a new scope here, since this would prevent A and B to be used implace if applicable #region parameter checking if (isnull(A) || isnull(B)) return empty(ILSize.Empty00); if (A.IsEmpty) { return empty(B.S); } else if (B.IsEmpty) { return empty(A.S); } //if (A.IsScalar || B.IsScalar || A.D.IsSameSize(B.D)) // return add(A,B); int dim = -1; for (int l = 0; l < Math.Max(A.S.NumberOfDimensions, B.S.NumberOfDimensions); l++) { if (A.S[l] != B.S[l]) { if (dim >= 0 || (A.S[l] != 1 && B.S[l] != 1)) { throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B"); } dim = l; } } if (dim > 1) throw new ILArgumentException("singleton dimension expansion currently is only supported for colum- and row vectors"); dim = -(dim - 1); // 0 -> 1, 1 -> 0 #endregion #region parameter preparation byte[] retArr; byte[] arrA = A.GetArrayForRead(); byte[] arrB = B.GetArrayForRead(); ILSize outDims; BinOptItExMode mode; int workItemMultiplierLenA; int workItemMultiplierLenB; if (A.IsVector) { outDims = B.S; if (!B.TryGetStorage4InplaceOp(out retArr)) { retArr = ILMemoryPool.Pool.New(outDims.NumberOfElements); mode = BinOptItExMode.VAN; } else { mode = BinOptItExMode.VAI; } workItemMultiplierLenB = outDims[0]; workItemMultiplierLenA = dim; // 0 for column, 1 for row vector } else if (B.IsVector) { outDims = A.S; if (!A.TryGetStorage4InplaceOp(out retArr)) { retArr = ILMemoryPool.Pool.New(outDims.NumberOfElements); mode = BinOptItExMode.AVN; } else { mode = BinOptItExMode.AVI; } workItemMultiplierLenB = dim; // 0 for column, 1 for row vector workItemMultiplierLenA = outDims[0]; } else { throw new ILArgumentException("A and B must have the same size except for one singleton dimension in either A or B"); } int itLen = outDims[0]; // (dim == 0) ? outDims.SequentialIndexDistance(1) : outDims.SequentialIndexDistance(0); #endregion #region worker loops definition ILDenseStorage retStorage = new ILDenseStorage(retArr, outDims); int workerCount = 1; Action worker = data => { // expects: iStart, iLen, ap, bp, cp Tuple range = (Tuple)data; byte* ap; byte* bp; byte* cp; switch (mode) { case BinOptItExMode.VAN: if (dim == 0) { bp = (byte*)range.Item3; cp = (byte*)range.Item4; for (int s = 0; s < range.Item1; s++) { ap = (byte*)range.Item2; int l = itLen; while (l > 10) { cp[0] = saturateByte (ap[0] / (double) bp[0]); cp[1] = saturateByte (ap[1] / (double) bp[1]); cp[2] = saturateByte (ap[2] / (double) bp[2]); cp[3] = saturateByte (ap[3] / (double) bp[3]); cp[4] = saturateByte (ap[4] / (double) bp[4]); cp[5] = saturateByte (ap[5] / (double) bp[5]); cp[6] = saturateByte (ap[6] / (double) bp[6]); cp[7] = saturateByte (ap[7] / (double) bp[7]); cp[8] = saturateByte (ap[8] / (double) bp[8]); cp[9] = saturateByte (ap[9] / (double) bp[9]); cp[10] = saturateByte (ap[10] / (double) bp[10]); ap += 11; bp += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp++ = saturateByte (*ap++ / (double) *bp++); } } } else { // dim == 1 ap = (byte*)range.Item2; bp = (byte*)range.Item3; cp = (byte*)range.Item4; for (int s = 0; s < range.Item1; s++) { byte val = *ap++; int l = itLen; while (l > 10) { cp[0] = saturateByte (val / (double) bp[0]); cp[1] = saturateByte (val / (double) bp[1]); cp[2] = saturateByte (val / (double) bp[2]); cp[3] = saturateByte (val / (double) bp[3]); cp[4] = saturateByte (val / (double) bp[4]); cp[5] = saturateByte (val / (double) bp[5]); cp[6] = saturateByte (val / (double) bp[6]); cp[7] = saturateByte (val / (double) bp[7]); cp[8] = saturateByte (val / (double) bp[8]); cp[9] = saturateByte (val / (double) bp[9]); cp[10] = saturateByte (val / (double) bp[10]); bp += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp++ = saturateByte (val / (double) *bp++); } } } break; case BinOptItExMode.VAI: if (dim == 0) { cp = (byte*)range.Item4; for (int s = 0; s < range.Item1; s++) { ap = (byte*)range.Item2; int l = itLen; while (l > 10) { cp[0] = saturateByte (ap[0] / (double) cp[0]); cp[1] = saturateByte (ap[1] / (double) cp[1]); cp[2] = saturateByte (ap[2] / (double) cp[2]); cp[3] = saturateByte (ap[3] / (double) cp[3]); cp[4] = saturateByte (ap[4] / (double) cp[4]); cp[5] = saturateByte (ap[5] / (double) cp[5]); cp[6] = saturateByte (ap[6] / (double) cp[6]); cp[7] = saturateByte (ap[7] / (double) cp[7]); cp[8] = saturateByte (ap[8] / (double) cp[8]); cp[9] = saturateByte (ap[9] / (double) cp[9]); cp[10] = saturateByte (ap[10] / (double) cp[10]); ap += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp = saturateByte (*ap++ / (double) *cp); cp++; } } } else { // dim == 1 cp = (byte*)range.Item4; ap = (byte*)range.Item2; for (int s = 0; s < range.Item1; s++) { byte val = *ap++; int l = itLen; while (l > 10) { cp[0] = saturateByte (val / (double) cp[0]); cp[1] = saturateByte (val / (double) cp[1]); cp[2] = saturateByte (val / (double) cp[2]); cp[3] = saturateByte (val / (double) cp[3]); cp[4] = saturateByte (val / (double) cp[4]); cp[5] = saturateByte (val / (double) cp[5]); cp[6] = saturateByte (val / (double) cp[6]); cp[7] = saturateByte (val / (double) cp[7]); cp[8] = saturateByte (val / (double) cp[8]); cp[9] = saturateByte (val / (double) cp[9]); cp[10] = saturateByte (val / (double) cp[10]); cp += 11; l -= 11; } while (l-- > 0) { *cp = saturateByte (val / (double) *cp); cp++; } } } break; case BinOptItExMode.AVN: if (dim == 0) { ap = (byte*)range.Item2; cp = (byte*)range.Item4; for (int s = 0; s < range.Item1; s++) { bp = (byte*)range.Item3; int l = itLen; while (l > 10) { cp[0] = saturateByte (ap[0] / (double) bp[0]); cp[1] = saturateByte (ap[1] / (double) bp[1]); cp[2] = saturateByte (ap[2] / (double) bp[2]); cp[3] = saturateByte (ap[3] / (double) bp[3]); cp[4] = saturateByte (ap[4] / (double) bp[4]); cp[5] = saturateByte (ap[5] / (double) bp[5]); cp[6] = saturateByte (ap[6] / (double) bp[6]); cp[7] = saturateByte (ap[7] / (double) bp[7]); cp[8] = saturateByte (ap[8] / (double) bp[8]); cp[9] = saturateByte (ap[9] / (double) bp[9]); cp[10] = saturateByte (ap[10] / (double) bp[10]); ap += 11; bp += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp = saturateByte (*ap / (double) *bp); ap++; bp++; cp++; } } } else { // dim = 1 ap = (byte*)range.Item2; bp = (byte*)range.Item3; cp = (byte*)range.Item4; for (int s = 0; s < range.Item1; s++) { byte val = *bp++; int l = itLen; while (l > 10) { cp[0] = saturateByte (ap[0] / (double) val); cp[1] = saturateByte (ap[1] / (double) val); cp[2] = saturateByte (ap[2] / (double) val); cp[3] = saturateByte (ap[3] / (double) val); cp[4] = saturateByte (ap[4] / (double) val); cp[5] = saturateByte (ap[5] / (double) val); cp[6] = saturateByte (ap[6] / (double) val); cp[7] = saturateByte (ap[7] / (double) val); cp[8] = saturateByte (ap[8] / (double) val); cp[9] = saturateByte (ap[9] / (double) val); cp[10] = saturateByte (ap[10] / (double) val); ap += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp = saturateByte (*ap / (double) val); ap++; cp++; } } } break; case BinOptItExMode.AVI: if (dim == 0) { cp = (byte*)range.Item4; for (int s = 0; s < range.Item1; s++) { bp = (byte*)range.Item3; int l = itLen; while (l > 10) { cp[0] = saturateByte (cp[0] / (double) bp[0]); cp[1] = saturateByte (cp[1] / (double) bp[1]); cp[2] = saturateByte (cp[2] / (double) bp[2]); cp[3] = saturateByte (cp[3] / (double) bp[3]); cp[4] = saturateByte (cp[4] / (double) bp[4]); cp[5] = saturateByte (cp[5] / (double) bp[5]); cp[6] = saturateByte (cp[6] / (double) bp[6]); cp[7] = saturateByte (cp[7] / (double) bp[7]); cp[8] = saturateByte (cp[8] / (double) bp[8]); cp[9] = saturateByte (cp[9] / (double) bp[9]); cp[10] = saturateByte (cp[10] / (double) bp[10]); bp += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp = saturateByte (*cp / (double) *bp); bp++; cp++; } } } else { // dim = 1 bp = (byte*)range.Item3; cp = (byte*)range.Item4; for (int s = 0; s < range.Item1; s++) { byte val = *bp++; int l = itLen; while (l > 10) { cp[0] = saturateByte (cp[0] / (double) val); cp[1] = saturateByte (cp[1] / (double) val); cp[2] = saturateByte (cp[2] / (double) val); cp[3] = saturateByte (cp[3] / (double) val); cp[4] = saturateByte (cp[4] / (double) val); cp[5] = saturateByte (cp[5] / (double) val); cp[6] = saturateByte (cp[6] / (double) val); cp[7] = saturateByte (cp[7] / (double) val); cp[8] = saturateByte (cp[8] / (double) val); cp[9] = saturateByte (cp[9] / (double) val); cp[10] = saturateByte (cp[10] / (double) val); cp += 11; l -= 11; } while (l --> 0) { *cp = saturateByte (*cp / (double) val); cp++; } } } break; } System.Threading.Interlocked.Decrement(ref workerCount); }; #endregion #region work distribution int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength; if (Settings.s_maxNumberThreads > 1 && outDims.NumberOfElements >= Settings.s_minParallelElement1Count && outDims[1] > 1) { if (outDims[1] > workItemCount) { workItemLength = outDims[1] / workItemCount; } else { workItemLength = outDims[1] / 2; workItemCount = 2; } } else { workItemLength = outDims[1]; workItemCount = 1; } fixed ( byte* arrAP = arrA) fixed ( byte* arrBP = arrB) fixed ( byte* retArrP = retArr) { for (; i < workItemCount - 1; i++) { Tuple range = new Tuple (workItemLength , (IntPtr)(arrAP + i * workItemMultiplierLenA * workItemLength) , (IntPtr)(arrBP + i * workItemMultiplierLenB * workItemLength) , (IntPtr)(retArrP + i * outDims[0] * workItemLength)); System.Threading.Interlocked.Increment(ref workerCount); ILThreadPool.QueueUserWorkItem(i, worker, range); } // the last (or may the only) chunk is done right here //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks); worker(new Tuple (outDims[1] - i * workItemLength , (IntPtr)(arrAP + i * workItemMultiplierLenA * workItemLength) , (IntPtr)(arrBP + i * workItemMultiplierLenB * workItemLength) , (IntPtr)(retArrP + i * outDims[0] * workItemLength))); ILThreadPool.Wait4Workers(ref workerCount); } #endregion return new ILRetArray(retStorage); //} // no scopes here! it disables implace operations } /// Divide elements /// Input array A /// Input array B /// Array with elementwise division of A and B /// On empty input an empty array will be returned. /// A and/or B may be scalar. The scalar value will be applied on all elements of the /// other array. /// If A or B is a colum vector and the other parameter is an array with a matching colum length, the vector is used to operate on all columns of the array. /// Similar, if one parameter is a row vector, it is used to operate along the rows of the other array if its number of columns matches the vector length. This feature /// can be used to replace the (costly) repmat function for most binary operators. /// For all other cases the dimensions of A and B must match. /// If the size of both arrays does not match any parameter rule. public unsafe static ILRetArray divide(ILInArray A, ILInArray B) { using (ILScope.Enter(A,B)) { int outLen; BinOpItMode mode; double [] retArr; double [] arrA = A.GetArrayForRead(); double[] arrB = B.GetArrayForRead(); ILSize outDims; #region determine operation mode if (A.IsScalar) { outDims = B.Size; if (B.IsScalar) { return new ILRetArray (new double [1]{ (A.GetValue(0) / B.GetValue(0))}, A.Size); } else if (B.IsEmpty) { return ILRetArray.empty(outDims); } else { outLen = outDims.NumberOfElements; if (!B.TryGetStorage4InplaceOp(out retArr)) { retArr = ILMemoryPool.Pool.New< double > (outLen); mode = BinOpItMode.SAN; } else { mode = BinOpItMode.SAI; } } } else { outDims = A.Size; if (B.IsScalar) { if (A.IsEmpty) { return ILRetArray.empty(A.Size); } outLen = A.S.NumberOfElements; if (!A.TryGetStorage4InplaceOp(out retArr)) { retArr = ILMemoryPool.Pool.New< double > (outLen); mode = BinOpItMode.ASN; } else { mode = BinOpItMode.ASI; } } else { // array + array if (!A.Size.IsSameSize(B.Size)) { return divideEx(A,B); } outLen = A.S.NumberOfElements; if (A.TryGetStorage4InplaceOp(out retArr)) mode = BinOpItMode.AAIA; else if (B.TryGetStorage4InplaceOp(out retArr)) mode = BinOpItMode.AAIB; else { retArr = ILMemoryPool.Pool.New< double > (outLen); mode = BinOpItMode.AAN; } } } #endregion ILDenseStorage retStorage = new ILDenseStorage(retArr, outDims); int i = 0, workerCount = 1; Action worker = data => { Tuple range = (Tuple)data; double* cp = (double*)range.Item5 + range.Item1; double scalar; int j = range.Item2; #region loops switch (mode) { case BinOpItMode.AAIA: double* bp = ((double*)range.Item4 + range.Item1); while (j > 20) { cp[0] = (cp[0] / bp[0]); cp[1] = (cp[1] / bp[1]); cp[2] = (cp[2] / bp[2]); cp[3] = (cp[3] / bp[3]); cp[4] = (cp[4] / bp[4]); cp[5] = (cp[5] / bp[5]); cp[6] = (cp[6] / bp[6]); cp[7] = (cp[7] / bp[7]); cp[8] = (cp[8] / bp[8]); cp[9] = (cp[9] / bp[9]); cp[10] = (cp[10] / bp[10]); cp[11] = (cp[11] / bp[11]); cp[12] = (cp[12] / bp[12]); cp[13] = (cp[13] / bp[13]); cp[14] = (cp[14] / bp[14]); cp[15] = (cp[15] / bp[15]); cp[16] = (cp[16] / bp[16]); cp[17] = (cp[17] / bp[17]); cp[18] = (cp[18] / bp[18]); cp[19] = (cp[19] / bp[19]); cp[20] = (cp[20] / bp[20]); cp += 21; bp += 21; j -= 21; } while (j --> 0) { *cp = (*cp / *bp); cp++; bp++; } break; case BinOpItMode.AAIB: double* ap = ((double*)range.Item3 + range.Item1); while (j > 20) { cp[0] = (ap[0] / cp[0]); cp[1] = (ap[1] / cp[1]); cp[2] = (ap[2] / cp[2]); cp[3] = (ap[3] / cp[3]); cp[4] = (ap[4] / cp[4]); cp[5] = (ap[5] / cp[5]); cp[6] = (ap[6] / cp[6]); cp[7] = (ap[7] / cp[7]); cp[8] = (ap[8] / cp[8]); cp[9] = (ap[9] / cp[9]); cp[10] = (ap[10] / cp[10]); cp[11] = (ap[11] / cp[11]); cp[12] = (ap[12] / cp[12]); cp[13] = (ap[13] / cp[13]); cp[14] = (ap[14] / cp[14]); cp[15] = (ap[15] / cp[15]); cp[16] = (ap[16] / cp[16]); cp[17] = (ap[17] / cp[17]); cp[18] = (ap[18] / cp[18]); cp[19] = (ap[19] / cp[19]); cp[20] = (ap[20] / cp[20]); ap += 21; cp += 21; j -= 21; } while (j --> 0) { *cp = (*ap / *cp); ap++; cp++; } break; case BinOpItMode.AAN: ap = ((double*)range.Item3 + range.Item1); bp = ((double*)range.Item4 + range.Item1); while (j > 20) { cp[0] = (ap[0] / bp[0]); cp[1] = (ap[1] / bp[1]); cp[2] = (ap[2] / bp[2]); cp[3] = (ap[3] / bp[3]); cp[4] = (ap[4] / bp[4]); cp[5] = (ap[5] / bp[5]); cp[6] = (ap[6] / bp[6]); cp[7] = (ap[7] / bp[7]); cp[8] = (ap[8] / bp[8]); cp[9] = (ap[9] / bp[9]); cp[10] = (ap[10] / bp[10]); cp[11] = (ap[11] / bp[11]); cp[12] = (ap[12] / bp[12]); cp[13] = (ap[13] / bp[13]); cp[14] = (ap[14] / bp[14]); cp[15] = (ap[15] / bp[15]); cp[16] = (ap[16] / bp[16]); cp[17] = (ap[17] / bp[17]); cp[18] = (ap[18] / bp[18]); cp[19] = (ap[19] / bp[19]); cp[20] = (ap[20] / bp[20]); ap+=21; bp+=21; cp+=21; j-=21; } while (j --> 0) { *cp = (*ap / *bp); ap++; bp++; cp++; } break; case BinOpItMode.ASI: scalar = *((double*)range.Item4); while (j > 20) { cp[0] = (cp[0] / scalar); cp[1] = (cp[1] / scalar); cp[2] = (cp[2] / scalar); cp[3] = (cp[3] / scalar); cp[4] = (cp[4] / scalar); cp[5] = (cp[5] / scalar); cp[6] = (cp[6] / scalar); cp[7] = (cp[7] / scalar); cp[8] = (cp[8] / scalar); cp[9] = (cp[9] / scalar); cp[10] = (cp[10] / scalar); cp[11] = (cp[11] / scalar); cp[12] = (cp[12] / scalar); cp[13] = (cp[13] / scalar); cp[14] = (cp[14] / scalar); cp[15] = (cp[15] / scalar); cp[16] = (cp[16] / scalar); cp[17] = (cp[17] / scalar); cp[18] = (cp[18] / scalar); cp[19] = (cp[19] / scalar); cp[20] = (cp[20] / scalar); cp += 21; j -= 21; } while (j --> 0) { *cp = (*cp / scalar); cp++; } break; case BinOpItMode.ASN: ap = ((double*)range.Item3 + range.Item1); scalar = *((double*)range.Item4); while (j > 20) { cp[0] = (ap[0] / scalar); cp[1] = (ap[1] / scalar); cp[2] = (ap[2] / scalar); cp[3] = (ap[3] / scalar); cp[4] = (ap[4] / scalar); cp[5] = (ap[5] / scalar); cp[6] = (ap[6] / scalar); cp[7] = (ap[7] / scalar); cp[8] = (ap[8] / scalar); cp[9] = (ap[9] / scalar); cp[10] = (ap[10] / scalar); cp[11] = (ap[11] / scalar); cp[12] = (ap[12] / scalar); cp[13] = (ap[13] / scalar); cp[14] = (ap[14] / scalar); cp[15] = (ap[15] / scalar); cp[16] = (ap[16] / scalar); cp[17] = (ap[17] / scalar); cp[18] = (ap[18] / scalar); cp[19] = (ap[19] / scalar); cp[20] = (ap[20] / scalar); ap+=21; cp+=21; j -= 21; } while (j --> 0) { *cp = (*ap / scalar); ap++; cp++; } break; case BinOpItMode.SAI: scalar = *((double*)range.Item3); while (j > 20) { cp[0] = (scalar / cp[0]); cp[1] = (scalar / cp[1]); cp[2] = (scalar / cp[2]); cp[3] = (scalar / cp[3]); cp[4] = (scalar / cp[4]); cp[5] = (scalar / cp[5]); cp[6] = (scalar / cp[6]); cp[7] = (scalar / cp[7]); cp[8] = (scalar / cp[8]); cp[9] = (scalar / cp[9]); cp[10] = (scalar / cp[10]); cp[11] = (scalar / cp[11]); cp[12] = (scalar / cp[12]); cp[13] = (scalar / cp[13]); cp[14] = (scalar / cp[14]); cp[15] = (scalar / cp[15]); cp[16] = (scalar / cp[16]); cp[17] = (scalar / cp[17]); cp[18] = (scalar / cp[18]); cp[19] = (scalar / cp[19]); cp[20] = (scalar / cp[20]); cp += 21; j -= 21; } while (j --> 0) { *cp = (scalar / *cp); cp++; } break; case BinOpItMode.SAN: scalar = *((double*)range.Item3); bp = ((double*)range.Item4 + range.Item1); while (j > 20) { cp[0] = (scalar / bp[0]); cp[1] = (scalar / bp[1]); cp[2] = (scalar / bp[2]); cp[3] = (scalar / bp[3]); cp[4] = (scalar / bp[4]); cp[5] = (scalar / bp[5]); cp[6] = (scalar / bp[6]); cp[7] = (scalar / bp[7]); cp[8] = (scalar / bp[8]); cp[9] = (scalar / bp[9]); cp[10] = (scalar / bp[10]); cp[11] = (scalar / bp[11]); cp[12] = (scalar / bp[12]); cp[13] = (scalar / bp[13]); cp[14] = (scalar / bp[14]); cp[15] = (scalar / bp[15]); cp[16] = (scalar / bp[16]); cp[17] = (scalar / bp[17]); cp[18] = (scalar / bp[18]); cp[19] = (scalar / bp[19]); cp[20] = (scalar / bp[20]); bp+=21; cp+=21; j -= 21; } while (j --> 0) { *cp = (scalar / *bp); bp++; cp++; } break; default: break; } #endregion System.Threading.Interlocked.Decrement(ref workerCount); //retStorage.PendingEvents.Signal(); }; #region do the work int workItemCount = Settings.s_maxNumberThreads, workItemLength; if (Settings.s_maxNumberThreads > 1 && outLen / 2 > Settings.s_minParallelElement1Count) { if (outLen / workItemCount > Settings.s_minParallelElement1Count) { workItemLength = outLen / workItemCount; //workItemLength = (int)((double)outLen / workItemCount * 1.05); } else { workItemLength = outLen / 2; workItemCount = 2; } } else { workItemLength = outLen; workItemCount = 1; } fixed ( double* arrAP = arrA) fixed ( double* arrBP = arrB) fixed ( double* retArrP = retArr) { for (; i < workItemCount - 1; i++) { Tuple range = new Tuple (i * workItemLength, workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode); System.Threading.Interlocked.Increment(ref workerCount); ILThreadPool.QueueUserWorkItem(i, worker, range); } // the last (or may the only) chunk is done right here //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks); worker(new Tuple (i * workItemLength, outLen - i * workItemLength, (IntPtr)arrAP, (IntPtr)arrBP, (IntPtr)retArrP, mode)); ILThreadPool.Wait4Workers(ref workerCount); } #endregion return new ILRetArray< double>(retStorage); } } private static unsafe ILRetArray divideEx(ILInArray A, ILInArray B) { //using (ILScope.Enter(A, B)) { we cannot start a new scope here, since this would prevent A and B to be used implace if applicable #region parameter checking if (isnull(A) || isnull(B)) return empty(ILSize.Empty00); if (A.IsEmpty) { return empty(B.S); } else if (B.IsEmpty) { return empty(A.S); } //if (A.IsScalar || B.IsScalar || A.D.IsSameSize(B.D)) // return add(A,B); int dim = -1; for (int l = 0; l < Math.Max(A.S.NumberOfDimensions, B.S.NumberOfDimensions); l++) { if (A.S[l] != B.S[l]) { if (dim >= 0 || (A.S[l] != 1 && B.S[l] != 1)) { throw new ILArgumentException("A and B must have the same size except for one simgleton dimension in A or B"); } dim = l; } } if (dim > 1) throw new ILArgumentException("singleton dimension expansion currently is only supported for colum- and row vectors"); dim = -(dim - 1); // 0 -> 1, 1 -> 0 #endregion #region parameter preparation double[] retArr; double[] arrA = A.GetArrayForRead(); double[] arrB = B.GetArrayForRead(); ILSize outDims; BinOptItExMode mode; int workItemMultiplierLenA; int workItemMultiplierLenB; if (A.IsVector) { outDims = B.S; if (!B.TryGetStorage4InplaceOp(out retArr)) { retArr = ILMemoryPool.Pool.New(outDims.NumberOfElements); mode = BinOptItExMode.VAN; } else { mode = BinOptItExMode.VAI; } workItemMultiplierLenB = outDims[0]; workItemMultiplierLenA = dim; // 0 for column, 1 for row vector } else if (B.IsVector) { outDims = A.S; if (!A.TryGetStorage4InplaceOp(out retArr)) { retArr = ILMemoryPool.Pool.New(outDims.NumberOfElements); mode = BinOptItExMode.AVN; } else { mode = BinOptItExMode.AVI; } workItemMultiplierLenB = dim; // 0 for column, 1 for row vector workItemMultiplierLenA = outDims[0]; } else { throw new ILArgumentException("A and B must have the same size except for one singleton dimension in either A or B"); } int itLen = outDims[0]; // (dim == 0) ? outDims.SequentialIndexDistance(1) : outDims.SequentialIndexDistance(0); #endregion #region worker loops definition ILDenseStorage retStorage = new ILDenseStorage(retArr, outDims); int workerCount = 1; Action worker = data => { // expects: iStart, iLen, ap, bp, cp Tuple range = (Tuple)data; double* ap; double* bp; double* cp; switch (mode) { case BinOptItExMode.VAN: if (dim == 0) { bp = (double*)range.Item3; cp = (double*)range.Item4; for (int s = 0; s < range.Item1; s++) { ap = (double*)range.Item2; int l = itLen; while (l > 10) { cp[0] = (ap[0] / bp[0]); cp[1] = (ap[1] / bp[1]); cp[2] = (ap[2] / bp[2]); cp[3] = (ap[3] / bp[3]); cp[4] = (ap[4] / bp[4]); cp[5] = (ap[5] / bp[5]); cp[6] = (ap[6] / bp[6]); cp[7] = (ap[7] / bp[7]); cp[8] = (ap[8] / bp[8]); cp[9] = (ap[9] / bp[9]); cp[10] = (ap[10] / bp[10]); ap += 11; bp += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp++ = (*ap++ / *bp++); } } } else { // dim == 1 ap = (double*)range.Item2; bp = (double*)range.Item3; cp = (double*)range.Item4; for (int s = 0; s < range.Item1; s++) { double val = *ap++; int l = itLen; while (l > 10) { cp[0] = (val / bp[0]); cp[1] = (val / bp[1]); cp[2] = (val / bp[2]); cp[3] = (val / bp[3]); cp[4] = (val / bp[4]); cp[5] = (val / bp[5]); cp[6] = (val / bp[6]); cp[7] = (val / bp[7]); cp[8] = (val / bp[8]); cp[9] = (val / bp[9]); cp[10] = (val / bp[10]); bp += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp++ = (val / *bp++); } } } break; case BinOptItExMode.VAI: if (dim == 0) { cp = (double*)range.Item4; for (int s = 0; s < range.Item1; s++) { ap = (double*)range.Item2; int l = itLen; while (l > 10) { cp[0] = (ap[0] / cp[0]); cp[1] = (ap[1] / cp[1]); cp[2] = (ap[2] / cp[2]); cp[3] = (ap[3] / cp[3]); cp[4] = (ap[4] / cp[4]); cp[5] = (ap[5] / cp[5]); cp[6] = (ap[6] / cp[6]); cp[7] = (ap[7] / cp[7]); cp[8] = (ap[8] / cp[8]); cp[9] = (ap[9] / cp[9]); cp[10] = (ap[10] / cp[10]); ap += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp = (*ap++ / *cp); cp++; } } } else { // dim == 1 cp = (double*)range.Item4; ap = (double*)range.Item2; for (int s = 0; s < range.Item1; s++) { double val = *ap++; int l = itLen; while (l > 10) { cp[0] = (val / cp[0]); cp[1] = (val / cp[1]); cp[2] = (val / cp[2]); cp[3] = (val / cp[3]); cp[4] = (val / cp[4]); cp[5] = (val / cp[5]); cp[6] = (val / cp[6]); cp[7] = (val / cp[7]); cp[8] = (val / cp[8]); cp[9] = (val / cp[9]); cp[10] = (val / cp[10]); cp += 11; l -= 11; } while (l-- > 0) { *cp = (val / *cp); cp++; } } } break; case BinOptItExMode.AVN: if (dim == 0) { ap = (double*)range.Item2; cp = (double*)range.Item4; for (int s = 0; s < range.Item1; s++) { bp = (double*)range.Item3; int l = itLen; while (l > 10) { cp[0] = (ap[0] / bp[0]); cp[1] = (ap[1] / bp[1]); cp[2] = (ap[2] / bp[2]); cp[3] = (ap[3] / bp[3]); cp[4] = (ap[4] / bp[4]); cp[5] = (ap[5] / bp[5]); cp[6] = (ap[6] / bp[6]); cp[7] = (ap[7] / bp[7]); cp[8] = (ap[8] / bp[8]); cp[9] = (ap[9] / bp[9]); cp[10] = (ap[10] / bp[10]); ap += 11; bp += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp = (*ap / *bp); ap++; bp++; cp++; } } } else { // dim = 1 ap = (double*)range.Item2; bp = (double*)range.Item3; cp = (double*)range.Item4; for (int s = 0; s < range.Item1; s++) { double val = *bp++; int l = itLen; while (l > 10) { cp[0] = (ap[0] / val); cp[1] = (ap[1] / val); cp[2] = (ap[2] / val); cp[3] = (ap[3] / val); cp[4] = (ap[4] / val); cp[5] = (ap[5] / val); cp[6] = (ap[6] / val); cp[7] = (ap[7] / val); cp[8] = (ap[8] / val); cp[9] = (ap[9] / val); cp[10] = (ap[10] / val); ap += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp = (*ap / val); ap++; cp++; } } } break; case BinOptItExMode.AVI: if (dim == 0) { cp = (double*)range.Item4; for (int s = 0; s < range.Item1; s++) { bp = (double*)range.Item3; int l = itLen; while (l > 10) { cp[0] = (cp[0] / bp[0]); cp[1] = (cp[1] / bp[1]); cp[2] = (cp[2] / bp[2]); cp[3] = (cp[3] / bp[3]); cp[4] = (cp[4] / bp[4]); cp[5] = (cp[5] / bp[5]); cp[6] = (cp[6] / bp[6]); cp[7] = (cp[7] / bp[7]); cp[8] = (cp[8] / bp[8]); cp[9] = (cp[9] / bp[9]); cp[10] = (cp[10] / bp[10]); bp += 11; cp += 11; l -= 11; } while (l-- > 0) { *cp = (*cp / *bp); bp++; cp++; } } } else { // dim = 1 bp = (double*)range.Item3; cp = (double*)range.Item4; for (int s = 0; s < range.Item1; s++) { double val = *bp++; int l = itLen; while (l > 10) { cp[0] = (cp[0] / val); cp[1] = (cp[1] / val); cp[2] = (cp[2] / val); cp[3] = (cp[3] / val); cp[4] = (cp[4] / val); cp[5] = (cp[5] / val); cp[6] = (cp[6] / val); cp[7] = (cp[7] / val); cp[8] = (cp[8] / val); cp[9] = (cp[9] / val); cp[10] = (cp[10] / val); cp += 11; l -= 11; } while (l --> 0) { *cp = (*cp / val); cp++; } } } break; } System.Threading.Interlocked.Decrement(ref workerCount); }; #endregion #region work distribution int i = 0, workItemCount = Settings.s_maxNumberThreads, workItemLength; if (Settings.s_maxNumberThreads > 1 && outDims.NumberOfElements >= Settings.s_minParallelElement1Count && outDims[1] > 1) { if (outDims[1] > workItemCount) { workItemLength = outDims[1] / workItemCount; } else { workItemLength = outDims[1] / 2; workItemCount = 2; } } else { workItemLength = outDims[1]; workItemCount = 1; } fixed ( double* arrAP = arrA) fixed ( double* arrBP = arrB) fixed ( double* retArrP = retArr) { for (; i < workItemCount - 1; i++) { Tuple range = new Tuple (workItemLength , (IntPtr)(arrAP + i * workItemMultiplierLenA * workItemLength) , (IntPtr)(arrBP + i * workItemMultiplierLenB * workItemLength) , (IntPtr)(retArrP + i * outDims[0] * workItemLength)); System.Threading.Interlocked.Increment(ref workerCount); ILThreadPool.QueueUserWorkItem(i, worker, range); } // the last (or may the only) chunk is done right here //System.Threading.Interlocked.Increment(ref retStorage.PendingTasks); worker(new Tuple (outDims[1] - i * workItemLength , (IntPtr)(arrAP + i * workItemMultiplierLenA * workItemLength) , (IntPtr)(arrBP + i * workItemMultiplierLenB * workItemLength) , (IntPtr)(retArrP + i * outDims[0] * workItemLength))); ILThreadPool.Wait4Workers(ref workerCount); } #endregion return new ILRetArray(retStorage); //} // no scopes here! it disables implace operations } #endregion HYCALPER AUTO GENERATED CODE } }