1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
25 |
|
---|
26 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
27 | public class InstanceProvider : ArtificialRegressionInstanceProvider {
|
---|
28 | public override string Name {
|
---|
29 | get { return "GPR Benchmark Problems"; }
|
---|
30 | }
|
---|
31 | public override string Description {
|
---|
32 | get { return ""; }
|
---|
33 | }
|
---|
34 | public override Uri WebLink {
|
---|
35 | get { return new Uri("http://dev.heuristiclab.com/trac/hl/core/wiki/AdditionalMaterial"); }
|
---|
36 | }
|
---|
37 | public override string ReferencePublication {
|
---|
38 | get { return ""; }
|
---|
39 | }
|
---|
40 |
|
---|
41 | public override IEnumerable<IDataDescriptor> GetDataDescriptors() {
|
---|
42 | List<IDataDescriptor> descriptorList = new List<IDataDescriptor>();
|
---|
43 | descriptorList.Add(new GaussianProcessSEIso());
|
---|
44 | descriptorList.Add(new GaussianProcessSEIso1());
|
---|
45 | descriptorList.Add(new GaussianProcessSEIso2());
|
---|
46 | descriptorList.Add(new GaussianProcessSEIso3());
|
---|
47 | descriptorList.Add(new GaussianProcessSEIso4());
|
---|
48 | descriptorList.Add(new GaussianProcessSEIso5());
|
---|
49 | descriptorList.Add(new GaussianProcessSEIso6());
|
---|
50 | descriptorList.Add(new GaussianProcessPolyTen());
|
---|
51 | descriptorList.Add(new GaussianProcessSEIsoDependentNoise());
|
---|
52 |
|
---|
53 | var covs = new ICovarianceFunction[] {
|
---|
54 | new CovarianceSquaredExponentialIso(),
|
---|
55 | new CovarianceSquaredExponentialArd(),
|
---|
56 | new CovarianceLinear(),
|
---|
57 | new CovarianceLinearArd(),
|
---|
58 | new CovarianceMaternIso(),
|
---|
59 | new CovariancePeriodic(),
|
---|
60 | new CovarianceRationalQuadraticArd(),
|
---|
61 | new CovarianceRationalQuadraticIso()
|
---|
62 | };
|
---|
63 | foreach (var cov in covs) {
|
---|
64 | descriptorList.Add(new GaussianProcessRegressionInstance(cov));
|
---|
65 | }
|
---|
66 |
|
---|
67 | return descriptorList;
|
---|
68 | }
|
---|
69 | }
|
---|
70 | }
|
---|
71 |
|
---|