#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Algorithms.DataAnalysis;
using HeuristicLab.Data;
using HeuristicLab.Random;
namespace HeuristicLab.Problems.Instances.DataAnalysis {
public class GaussianProcessPolyTen : ArtificialRegressionDataDescriptor {
public override string Name {
get {
return "Gaussian Process Poly-10 y = GP(0, CovSEIso(X1)*CovSEIso(X2) + " +
"CovSEIso(X3)*CovSEIso(X4) + CovSEIso(X5)*CovSEIso(X6) + CovSEIso(X1)*CovSEIso(X7)*CovSEIso(X9) + CovSEIso(X3)*CovSEIso(X6)*CovSEIso(X10)";
}
}
public override string Description {
get { return ""; }
}
protected override string TargetVariable { get { return "Y"; } }
protected override string[] VariableNames { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10", "Y" }; } }
protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10" }; } }
protected override int TrainingPartitionStart { get { return 0; } }
protected override int TrainingPartitionEnd { get { return 500; } }
protected override int TestPartitionStart { get { return 500; } }
protected override int TestPartitionEnd { get { return 1000; } }
protected override List> GenerateValues() {
var mt = new MersenneTwister(31415);
List> data = new List>();
for (int i = 0; i < AllowedInputVariables.Count(); i++) {
data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -1, 1).ToList());
}
var hyp = new double[]
{
0.0, 0.0,
0.0, 0.0,
0.0, 0.0,
0.0, 0.0,
0.0, 0.0,
0.0, 0.0,
0.0, 0.0,
0.0, 0.0,
0.0, 0.0,
0.0, 0.0,
0.0, 0.0,
0.0, 0.0,
0.0, 0.0,
0.0, 0.0,
0.0, 0.0,
-5.0 // noise
};
var covarianceFunction = new CovarianceSum();
var t1 = new CovarianceProduct();
var m1 = new CovarianceMask();
m1.SelectedDimensionsParameter.Value = new IntArray(new int[] { 0 });
var m2 = new CovarianceMask();
m2.SelectedDimensionsParameter.Value = new IntArray(new int[] { 1 });
t1.Factors.Add(m1);
t1.Factors.Add(m2);
var t2 = new CovarianceProduct();
var m3 = new CovarianceMask();
m3.SelectedDimensionsParameter.Value = new IntArray(new int[] { 2 });
var m4 = new CovarianceMask();
m4.SelectedDimensionsParameter.Value = new IntArray(new int[] { 3 });
t2.Factors.Add(m3);
t2.Factors.Add(m4);
var t3 = new CovarianceProduct();
var m5 = new CovarianceMask();
m5.SelectedDimensionsParameter.Value = new IntArray(new int[] { 4 });
var m6 = new CovarianceMask();
m6.SelectedDimensionsParameter.Value = new IntArray(new int[] { 5 });
t3.Factors.Add(m5);
t3.Factors.Add(m6);
var t4 = new CovarianceProduct();
var m1_ = new CovarianceMask();
m1_.SelectedDimensionsParameter.Value = new IntArray(new int[] { 0 });
var m7 = new CovarianceMask();
m7.SelectedDimensionsParameter.Value = new IntArray(new int[] { 6 });
var m9 = new CovarianceMask();
m9.SelectedDimensionsParameter.Value = new IntArray(new int[] { 8 });
t4.Factors.Add(m1_);
t4.Factors.Add(m7);
t4.Factors.Add(m9);
var t5 = new CovarianceProduct();
var m3_ = new CovarianceMask();
m3_.SelectedDimensionsParameter.Value = new IntArray(new int[] { 2 });
var m6_ = new CovarianceMask();
m6_.SelectedDimensionsParameter.Value = new IntArray(new int[] { 5 });
var m10 = new CovarianceMask();
m10.SelectedDimensionsParameter.Value = new IntArray(new int[] { 9 });
t5.Factors.Add(m3);
t5.Factors.Add(m6_);
t5.Factors.Add(m10);
covarianceFunction.Terms.Add(t1);
covarianceFunction.Terms.Add(t2);
covarianceFunction.Terms.Add(t3);
covarianceFunction.Terms.Add(t4);
covarianceFunction.Terms.Add(t5);
var cov = covarianceFunction.GetParameterizedCovarianceFunction(hyp, Enumerable.Range(0, 10));
var target = Util.SampleGaussianProcess(mt, cov, data);
data.Add(target);
return data;
}
}
}