[8826] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
| 25 | using HeuristicLab.Data;
|
---|
| 26 | using HeuristicLab.Random;
|
---|
| 27 |
|
---|
| 28 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
| 29 | public class GaussianProcessPolyTen : ArtificialRegressionDataDescriptor {
|
---|
| 30 |
|
---|
| 31 | public override string Name {
|
---|
| 32 | get {
|
---|
| 33 | return "Gaussian Process Poly-10 y = GP(0, CovSEIso(X1)*CovSEIso(X2) + " +
|
---|
| 34 | "CovSEIso(X3)*CovSEIso(X4) + CovSEIso(X5)*CovSEIso(X6) + CovSEIso(X1)*CovSEIso(X7)*CovSEIso(X9) + CovSEIso(X3)*CovSEIso(X6)*CovSEIso(X10)";
|
---|
| 35 | }
|
---|
| 36 | }
|
---|
| 37 | public override string Description {
|
---|
| 38 | get { return ""; }
|
---|
| 39 | }
|
---|
| 40 | protected override string TargetVariable { get { return "Y"; } }
|
---|
| 41 | protected override string[] VariableNames { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10", "Y" }; } }
|
---|
| 42 | protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2", "X3", "X4", "X5", "X6", "X7", "X8", "X9", "X10" }; } }
|
---|
| 43 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
[9112] | 44 | protected override int TrainingPartitionEnd { get { return 500; } }
|
---|
| 45 | protected override int TestPartitionStart { get { return 500; } }
|
---|
| 46 | protected override int TestPartitionEnd { get { return 1000; } }
|
---|
[8826] | 47 |
|
---|
| 48 | protected override List<List<double>> GenerateValues() {
|
---|
| 49 | var mt = new MersenneTwister(31415);
|
---|
| 50 |
|
---|
| 51 | List<List<double>> data = new List<List<double>>();
|
---|
| 52 | for (int i = 0; i < AllowedInputVariables.Count(); i++) {
|
---|
[8873] | 53 | data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -1, 1).ToList());
|
---|
[8826] | 54 | }
|
---|
| 55 |
|
---|
| 56 |
|
---|
[8873] | 57 | var hyp = new double[]
|
---|
| 58 | {
|
---|
| 59 | 0.0, 0.0,
|
---|
| 60 | 0.0, 0.0,
|
---|
| 61 | 0.0, 0.0,
|
---|
| 62 | 0.0, 0.0,
|
---|
| 63 | 0.0, 0.0,
|
---|
| 64 | 0.0, 0.0,
|
---|
| 65 | 0.0, 0.0,
|
---|
| 66 | 0.0, 0.0,
|
---|
| 67 | 0.0, 0.0,
|
---|
| 68 | 0.0, 0.0,
|
---|
| 69 | 0.0, 0.0,
|
---|
| 70 | 0.0, 0.0,
|
---|
| 71 | 0.0, 0.0,
|
---|
| 72 | 0.0, 0.0,
|
---|
| 73 | 0.0, 0.0,
|
---|
| 74 | -5.0 // noise
|
---|
| 75 | };
|
---|
[8826] | 76 |
|
---|
[9622] | 77 |
|
---|
[8826] | 78 | var covarianceFunction = new CovarianceSum();
|
---|
| 79 | var t1 = new CovarianceProduct();
|
---|
| 80 | var m1 = new CovarianceMask();
|
---|
| 81 | m1.SelectedDimensionsParameter.Value = new IntArray(new int[] { 0 });
|
---|
| 82 | var m2 = new CovarianceMask();
|
---|
| 83 | m2.SelectedDimensionsParameter.Value = new IntArray(new int[] { 1 });
|
---|
| 84 | t1.Factors.Add(m1);
|
---|
| 85 | t1.Factors.Add(m2);
|
---|
| 86 |
|
---|
| 87 | var t2 = new CovarianceProduct();
|
---|
| 88 | var m3 = new CovarianceMask();
|
---|
| 89 | m3.SelectedDimensionsParameter.Value = new IntArray(new int[] { 2 });
|
---|
| 90 | var m4 = new CovarianceMask();
|
---|
| 91 | m4.SelectedDimensionsParameter.Value = new IntArray(new int[] { 3 });
|
---|
| 92 | t2.Factors.Add(m3);
|
---|
| 93 | t2.Factors.Add(m4);
|
---|
| 94 |
|
---|
| 95 | var t3 = new CovarianceProduct();
|
---|
| 96 | var m5 = new CovarianceMask();
|
---|
| 97 | m5.SelectedDimensionsParameter.Value = new IntArray(new int[] { 4 });
|
---|
| 98 | var m6 = new CovarianceMask();
|
---|
| 99 | m6.SelectedDimensionsParameter.Value = new IntArray(new int[] { 5 });
|
---|
| 100 | t3.Factors.Add(m5);
|
---|
| 101 | t3.Factors.Add(m6);
|
---|
| 102 |
|
---|
| 103 | var t4 = new CovarianceProduct();
|
---|
| 104 | var m1_ = new CovarianceMask();
|
---|
| 105 | m1_.SelectedDimensionsParameter.Value = new IntArray(new int[] { 0 });
|
---|
| 106 | var m7 = new CovarianceMask();
|
---|
| 107 | m7.SelectedDimensionsParameter.Value = new IntArray(new int[] { 6 });
|
---|
| 108 | var m9 = new CovarianceMask();
|
---|
| 109 | m9.SelectedDimensionsParameter.Value = new IntArray(new int[] { 8 });
|
---|
| 110 | t4.Factors.Add(m1_);
|
---|
| 111 | t4.Factors.Add(m7);
|
---|
| 112 | t4.Factors.Add(m9);
|
---|
| 113 |
|
---|
| 114 | var t5 = new CovarianceProduct();
|
---|
| 115 | var m3_ = new CovarianceMask();
|
---|
| 116 | m3_.SelectedDimensionsParameter.Value = new IntArray(new int[] { 2 });
|
---|
| 117 | var m6_ = new CovarianceMask();
|
---|
| 118 | m6_.SelectedDimensionsParameter.Value = new IntArray(new int[] { 5 });
|
---|
| 119 | var m10 = new CovarianceMask();
|
---|
| 120 | m10.SelectedDimensionsParameter.Value = new IntArray(new int[] { 9 });
|
---|
| 121 | t5.Factors.Add(m3);
|
---|
| 122 | t5.Factors.Add(m6_);
|
---|
| 123 | t5.Factors.Add(m10);
|
---|
| 124 |
|
---|
| 125 | covarianceFunction.Terms.Add(t1);
|
---|
| 126 | covarianceFunction.Terms.Add(t2);
|
---|
| 127 | covarianceFunction.Terms.Add(t3);
|
---|
| 128 | covarianceFunction.Terms.Add(t4);
|
---|
| 129 | covarianceFunction.Terms.Add(t5);
|
---|
| 130 |
|
---|
[9622] | 131 | var cov = covarianceFunction.GetParameterizedCovarianceFunction(hyp, Enumerable.Range(0, 10));
|
---|
[8826] | 132 |
|
---|
[9099] | 133 |
|
---|
| 134 | var target = Util.SampleGaussianProcess(mt, cov, data);
|
---|
[8826] | 135 | data.Add(target);
|
---|
| 136 |
|
---|
| 137 | return data;
|
---|
| 138 | }
|
---|
| 139 | }
|
---|
| 140 | }
|
---|