[9214] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
| 27 | using HeuristicLab.Random;
|
---|
| 28 |
|
---|
| 29 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
| 30 | public class GaussianProcess2dPeriodic : ArtificialRegressionDataDescriptor {
|
---|
| 31 |
|
---|
| 32 | public override string Name {
|
---|
| 33 | get {
|
---|
| 34 | return "Gaussian Process 2d periodic";
|
---|
| 35 | }
|
---|
| 36 | }
|
---|
| 37 | public override string Description {
|
---|
| 38 | get { return ""; }
|
---|
| 39 | }
|
---|
| 40 | protected override string TargetVariable { get { return "Y"; } }
|
---|
| 41 | protected override string[] VariableNames { get { return new string[] { "X1", "X2", "Y" }; } }
|
---|
| 42 | protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2" }; } }
|
---|
| 43 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
| 44 | protected override int TrainingPartitionEnd { get { return 20 * 20; } }
|
---|
| 45 | protected override int TestPartitionStart { get { return 20 * 20; } }
|
---|
| 46 | protected override int TestPartitionEnd { get { return 2 * (20 * 20); } }
|
---|
| 47 |
|
---|
| 48 | protected override List<List<double>> GenerateValues() {
|
---|
| 49 | List<List<double>> independentTrainingData = new List<List<double>>();
|
---|
| 50 | List<List<double>> independentTestData = new List<List<double>>();
|
---|
| 51 | for (int i = 0; i < AllowedInputVariables.Count(); i++) {
|
---|
| 52 | independentTrainingData.Add(ValueGenerator.GenerateSteps(0, 0.99, 1.0 / 20).ToList());
|
---|
| 53 | independentTestData.Add(ValueGenerator.GenerateSteps(0.005, 1, 1.0 / 20).ToList());
|
---|
| 54 | }
|
---|
| 55 |
|
---|
| 56 |
|
---|
| 57 | var trainingData = ValueGenerator.GenerateAllCombinationsOfValuesInLists(independentTrainingData);
|
---|
| 58 | var testData = ValueGenerator.GenerateAllCombinationsOfValuesInLists(independentTestData);
|
---|
| 59 | List<List<double>> data = new List<List<double>>();
|
---|
| 60 | foreach (var e in trainingData) {
|
---|
| 61 | data.Add(e.ToList());
|
---|
| 62 | }
|
---|
| 63 | int j = 0;
|
---|
| 64 | foreach (var e in testData) {
|
---|
| 65 | data[j].AddRange(e);
|
---|
| 66 | j++;
|
---|
| 67 | }
|
---|
| 68 |
|
---|
| 69 | var covarianceFunction = new CovarianceSum();
|
---|
| 70 | var m1 = new CovarianceMask();
|
---|
| 71 | m1.SelectedDimensionsParameter.Value = new IntArray(new int[] { 0 });
|
---|
| 72 | m1.CovarianceFunctionParameter.Value = new CovariancePeriodic();
|
---|
| 73 | var m2 = new CovarianceMask();
|
---|
| 74 | m2.SelectedDimensionsParameter.Value = new IntArray(new int[] { 1 });
|
---|
| 75 | m2.CovarianceFunctionParameter.Value = new CovariancePeriodic();
|
---|
| 76 |
|
---|
| 77 | covarianceFunction.Terms.Add(m1);
|
---|
| 78 | covarianceFunction.Terms.Add(m2);
|
---|
| 79 | covarianceFunction.Terms.Add(new CovarianceNoise());
|
---|
| 80 | var cov =
|
---|
| 81 | covarianceFunction.GetParameterizedCovarianceFunction(
|
---|
| 82 | Enumerable.Repeat(0.0, covarianceFunction.GetNumberOfParameters(2) - 1)
|
---|
| 83 | .Concat(new double[] { Math.Log(Math.Sqrt(0.01)) })
|
---|
| 84 | .ToArray(),
|
---|
[9622] | 85 | new int[] { 0, 1});
|
---|
[9214] | 86 |
|
---|
| 87 | var mt = new MersenneTwister(31415);
|
---|
| 88 | var target = Util.SampleGaussianProcess(mt, cov, data);
|
---|
| 89 | data.Add(target);
|
---|
| 90 |
|
---|
| 91 | return data;
|
---|
| 92 | }
|
---|
| 93 | }
|
---|
| 94 | }
|
---|