// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2010 Gael Guennebaud // Copyright (C) 2009 Mathieu Gautier // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_QUATERNION_H #define EIGEN_QUATERNION_H namespace Eigen { /*************************************************************************** * Definition of QuaternionBase * The implementation is at the end of the file ***************************************************************************/ namespace internal { template struct quaternionbase_assign_impl; } /** \geometry_module \ingroup Geometry_Module * \class QuaternionBase * \brief Base class for quaternion expressions * \tparam Derived derived type (CRTP) * \sa class Quaternion */ template class QuaternionBase : public RotationBase { typedef RotationBase Base; public: using Base::operator*; using Base::derived; typedef typename internal::traits::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef typename internal::traits::Coefficients Coefficients; enum { Flags = Eigen::internal::traits::Flags }; // typedef typename Matrix Coefficients; /** the type of a 3D vector */ typedef Matrix Vector3; /** the equivalent rotation matrix type */ typedef Matrix Matrix3; /** the equivalent angle-axis type */ typedef AngleAxis AngleAxisType; /** \returns the \c x coefficient */ inline Scalar x() const { return this->derived().coeffs().coeff(0); } /** \returns the \c y coefficient */ inline Scalar y() const { return this->derived().coeffs().coeff(1); } /** \returns the \c z coefficient */ inline Scalar z() const { return this->derived().coeffs().coeff(2); } /** \returns the \c w coefficient */ inline Scalar w() const { return this->derived().coeffs().coeff(3); } /** \returns a reference to the \c x coefficient */ inline Scalar& x() { return this->derived().coeffs().coeffRef(0); } /** \returns a reference to the \c y coefficient */ inline Scalar& y() { return this->derived().coeffs().coeffRef(1); } /** \returns a reference to the \c z coefficient */ inline Scalar& z() { return this->derived().coeffs().coeffRef(2); } /** \returns a reference to the \c w coefficient */ inline Scalar& w() { return this->derived().coeffs().coeffRef(3); } /** \returns a read-only vector expression of the imaginary part (x,y,z) */ inline const VectorBlock vec() const { return coeffs().template head<3>(); } /** \returns a vector expression of the imaginary part (x,y,z) */ inline VectorBlock vec() { return coeffs().template head<3>(); } /** \returns a read-only vector expression of the coefficients (x,y,z,w) */ inline const typename internal::traits::Coefficients& coeffs() const { return derived().coeffs(); } /** \returns a vector expression of the coefficients (x,y,z,w) */ inline typename internal::traits::Coefficients& coeffs() { return derived().coeffs(); } EIGEN_STRONG_INLINE QuaternionBase& operator=(const QuaternionBase& other); template EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase& other); // disabled this copy operator as it is giving very strange compilation errors when compiling // test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's // useful; however notice that we already have the templated operator= above and e.g. in MatrixBase // we didn't have to add, in addition to templated operator=, such a non-templated copy operator. // Derived& operator=(const QuaternionBase& other) // { return operator=(other); } Derived& operator=(const AngleAxisType& aa); template Derived& operator=(const MatrixBase& m); /** \returns a quaternion representing an identity rotation * \sa MatrixBase::Identity() */ static inline Quaternion Identity() { return Quaternion(1, 0, 0, 0); } /** \sa QuaternionBase::Identity(), MatrixBase::setIdentity() */ inline QuaternionBase& setIdentity() { coeffs() << 0, 0, 0, 1; return *this; } /** \returns the squared norm of the quaternion's coefficients * \sa QuaternionBase::norm(), MatrixBase::squaredNorm() */ inline Scalar squaredNorm() const { return coeffs().squaredNorm(); } /** \returns the norm of the quaternion's coefficients * \sa QuaternionBase::squaredNorm(), MatrixBase::norm() */ inline Scalar norm() const { return coeffs().norm(); } /** Normalizes the quaternion \c *this * \sa normalized(), MatrixBase::normalize() */ inline void normalize() { coeffs().normalize(); } /** \returns a normalized copy of \c *this * \sa normalize(), MatrixBase::normalized() */ inline Quaternion normalized() const { return Quaternion(coeffs().normalized()); } /** \returns the dot product of \c *this and \a other * Geometrically speaking, the dot product of two unit quaternions * corresponds to the cosine of half the angle between the two rotations. * \sa angularDistance() */ template inline Scalar dot(const QuaternionBase& other) const { return coeffs().dot(other.coeffs()); } template Scalar angularDistance(const QuaternionBase& other) const; /** \returns an equivalent 3x3 rotation matrix */ Matrix3 toRotationMatrix() const; /** \returns the quaternion which transform \a a into \a b through a rotation */ template Derived& setFromTwoVectors(const MatrixBase& a, const MatrixBase& b); template EIGEN_STRONG_INLINE Quaternion operator* (const QuaternionBase& q) const; template EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase& q); /** \returns the quaternion describing the inverse rotation */ Quaternion inverse() const; /** \returns the conjugated quaternion */ Quaternion conjugate() const; /** \returns an interpolation for a constant motion between \a other and \c *this * \a t in [0;1] * see http://en.wikipedia.org/wiki/Slerp */ template Quaternion slerp(Scalar t, const QuaternionBase& other) const; /** \returns \c true if \c *this is approximately equal to \a other, within the precision * determined by \a prec. * * \sa MatrixBase::isApprox() */ template bool isApprox(const QuaternionBase& other, RealScalar prec = NumTraits::dummy_precision()) const { return coeffs().isApprox(other.coeffs(), prec); } /** return the result vector of \a v through the rotation*/ EIGEN_STRONG_INLINE Vector3 _transformVector(Vector3 v) const; /** \returns \c *this with scalar type casted to \a NewScalarType * * Note that if \a NewScalarType is equal to the current scalar type of \c *this * then this function smartly returns a const reference to \c *this. */ template inline typename internal::cast_return_type >::type cast() const { return typename internal::cast_return_type >::type(derived()); } #ifdef EIGEN_QUATERNIONBASE_PLUGIN # include EIGEN_QUATERNIONBASE_PLUGIN #endif }; /*************************************************************************** * Definition/implementation of Quaternion ***************************************************************************/ /** \geometry_module \ingroup Geometry_Module * * \class Quaternion * * \brief The quaternion class used to represent 3D orientations and rotations * * \tparam _Scalar the scalar type, i.e., the type of the coefficients * \tparam _Options controls the memory alignement of the coeffecients. Can be \# AutoAlign or \# DontAlign. Default is AutoAlign. * * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of * orientations and rotations of objects in three dimensions. Compared to other representations * like Euler angles or 3x3 matrices, quatertions offer the following advantages: * \li \b compact storage (4 scalars) * \li \b efficient to compose (28 flops), * \li \b stable spherical interpolation * * The following two typedefs are provided for convenience: * \li \c Quaternionf for \c float * \li \c Quaterniond for \c double * * \sa class AngleAxis, class Transform */ namespace internal { template struct traits > { typedef Quaternion<_Scalar,_Options> PlainObject; typedef _Scalar Scalar; typedef Matrix<_Scalar,4,1,_Options> Coefficients; enum{ IsAligned = internal::traits::Flags & AlignedBit, Flags = IsAligned ? (AlignedBit | LvalueBit) : LvalueBit }; }; } template class Quaternion : public QuaternionBase > { typedef QuaternionBase > Base; enum { IsAligned = internal::traits::IsAligned }; public: typedef _Scalar Scalar; EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Quaternion) using Base::operator*=; typedef typename internal::traits::Coefficients Coefficients; typedef typename Base::AngleAxisType AngleAxisType; /** Default constructor leaving the quaternion uninitialized. */ inline Quaternion() {} /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from * its four coefficients \a w, \a x, \a y and \a z. * * \warning Note the order of the arguments: the real \a w coefficient first, * while internally the coefficients are stored in the following order: * [\c x, \c y, \c z, \c w] */ inline Quaternion(Scalar w, Scalar x, Scalar y, Scalar z) : m_coeffs(x, y, z, w){} /** Constructs and initialize a quaternion from the array data */ inline Quaternion(const Scalar* data) : m_coeffs(data) {} /** Copy constructor */ template EIGEN_STRONG_INLINE Quaternion(const QuaternionBase& other) { this->Base::operator=(other); } /** Constructs and initializes a quaternion from the angle-axis \a aa */ explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; } /** Constructs and initializes a quaternion from either: * - a rotation matrix expression, * - a 4D vector expression representing quaternion coefficients. */ template explicit inline Quaternion(const MatrixBase& other) { *this = other; } /** Explicit copy constructor with scalar conversion */ template explicit inline Quaternion(const Quaternion& other) { m_coeffs = other.coeffs().template cast(); } template static Quaternion FromTwoVectors(const MatrixBase& a, const MatrixBase& b); inline Coefficients& coeffs() { return m_coeffs;} inline const Coefficients& coeffs() const { return m_coeffs;} EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(IsAligned) protected: Coefficients m_coeffs; #ifndef EIGEN_PARSED_BY_DOXYGEN static EIGEN_STRONG_INLINE void _check_template_params() { EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options, INVALID_MATRIX_TEMPLATE_PARAMETERS) } #endif }; /** \ingroup Geometry_Module * single precision quaternion type */ typedef Quaternion Quaternionf; /** \ingroup Geometry_Module * double precision quaternion type */ typedef Quaternion Quaterniond; /*************************************************************************** * Specialization of Map> ***************************************************************************/ namespace internal { template struct traits, _Options> > : traits > { typedef Map, _Options> Coefficients; }; } namespace internal { template struct traits, _Options> > : traits > { typedef Map, _Options> Coefficients; typedef traits > TraitsBase; enum { Flags = TraitsBase::Flags & ~LvalueBit }; }; } /** \ingroup Geometry_Module * \brief Quaternion expression mapping a constant memory buffer * * \tparam _Scalar the type of the Quaternion coefficients * \tparam _Options see class Map * * This is a specialization of class Map for Quaternion. This class allows to view * a 4 scalar memory buffer as an Eigen's Quaternion object. * * \sa class Map, class Quaternion, class QuaternionBase */ template class Map, _Options > : public QuaternionBase, _Options> > { typedef QuaternionBase, _Options> > Base; public: typedef _Scalar Scalar; typedef typename internal::traits::Coefficients Coefficients; EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Map) using Base::operator*=; /** Constructs a Mapped Quaternion object from the pointer \a coeffs * * The pointer \a coeffs must reference the four coeffecients of Quaternion in the following order: * \code *coeffs == {x, y, z, w} \endcode * * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */ EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {} inline const Coefficients& coeffs() const { return m_coeffs;} protected: const Coefficients m_coeffs; }; /** \ingroup Geometry_Module * \brief Expression of a quaternion from a memory buffer * * \tparam _Scalar the type of the Quaternion coefficients * \tparam _Options see class Map * * This is a specialization of class Map for Quaternion. This class allows to view * a 4 scalar memory buffer as an Eigen's Quaternion object. * * \sa class Map, class Quaternion, class QuaternionBase */ template class Map, _Options > : public QuaternionBase, _Options> > { typedef QuaternionBase, _Options> > Base; public: typedef _Scalar Scalar; typedef typename internal::traits::Coefficients Coefficients; EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Map) using Base::operator*=; /** Constructs a Mapped Quaternion object from the pointer \a coeffs * * The pointer \a coeffs must reference the four coeffecients of Quaternion in the following order: * \code *coeffs == {x, y, z, w} \endcode * * If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */ EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {} inline Coefficients& coeffs() { return m_coeffs; } inline const Coefficients& coeffs() const { return m_coeffs; } protected: Coefficients m_coeffs; }; /** \ingroup Geometry_Module * Map an unaligned array of single precision scalar as a quaternion */ typedef Map, 0> QuaternionMapf; /** \ingroup Geometry_Module * Map an unaligned array of double precision scalar as a quaternion */ typedef Map, 0> QuaternionMapd; /** \ingroup Geometry_Module * Map a 16-bits aligned array of double precision scalars as a quaternion */ typedef Map, Aligned> QuaternionMapAlignedf; /** \ingroup Geometry_Module * Map a 16-bits aligned array of double precision scalars as a quaternion */ typedef Map, Aligned> QuaternionMapAlignedd; /*************************************************************************** * Implementation of QuaternionBase methods ***************************************************************************/ // Generic Quaternion * Quaternion product // This product can be specialized for a given architecture via the Arch template argument. namespace internal { template struct quat_product { static EIGEN_STRONG_INLINE Quaternion run(const QuaternionBase& a, const QuaternionBase& b){ return Quaternion ( a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(), a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(), a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(), a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x() ); } }; } /** \returns the concatenation of two rotations as a quaternion-quaternion product */ template template EIGEN_STRONG_INLINE Quaternion::Scalar> QuaternionBase::operator* (const QuaternionBase& other) const { EIGEN_STATIC_ASSERT((internal::is_same::value), YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) return internal::quat_product::Scalar, internal::traits::IsAligned && internal::traits::IsAligned>::run(*this, other); } /** \sa operator*(Quaternion) */ template template EIGEN_STRONG_INLINE Derived& QuaternionBase::operator*= (const QuaternionBase& other) { derived() = derived() * other.derived(); return derived(); } /** Rotation of a vector by a quaternion. * \remarks If the quaternion is used to rotate several points (>1) * then it is much more efficient to first convert it to a 3x3 Matrix. * Comparison of the operation cost for n transformations: * - Quaternion2: 30n * - Via a Matrix3: 24 + 15n */ template EIGEN_STRONG_INLINE typename QuaternionBase::Vector3 QuaternionBase::_transformVector(Vector3 v) const { // Note that this algorithm comes from the optimization by hand // of the conversion to a Matrix followed by a Matrix/Vector product. // It appears to be much faster than the common algorithm found // in the litterature (30 versus 39 flops). It also requires two // Vector3 as temporaries. Vector3 uv = this->vec().cross(v); uv += uv; return v + this->w() * uv + this->vec().cross(uv); } template EIGEN_STRONG_INLINE QuaternionBase& QuaternionBase::operator=(const QuaternionBase& other) { coeffs() = other.coeffs(); return derived(); } template template EIGEN_STRONG_INLINE Derived& QuaternionBase::operator=(const QuaternionBase& other) { coeffs() = other.coeffs(); return derived(); } /** Set \c *this from an angle-axis \a aa and returns a reference to \c *this */ template EIGEN_STRONG_INLINE Derived& QuaternionBase::operator=(const AngleAxisType& aa) { Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings this->w() = internal::cos(ha); this->vec() = internal::sin(ha) * aa.axis(); return derived(); } /** Set \c *this from the expression \a xpr: * - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion * - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix * and \a xpr is converted to a quaternion */ template template inline Derived& QuaternionBase::operator=(const MatrixBase& xpr) { EIGEN_STATIC_ASSERT((internal::is_same::value), YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) internal::quaternionbase_assign_impl::run(*this, xpr.derived()); return derived(); } /** Convert the quaternion to a 3x3 rotation matrix. The quaternion is required to * be normalized, otherwise the result is undefined. */ template inline typename QuaternionBase::Matrix3 QuaternionBase::toRotationMatrix(void) const { // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!) // if not inlined then the cost of the return by value is huge ~ +35%, // however, not inlining this function is an order of magnitude slower, so // it has to be inlined, and so the return by value is not an issue Matrix3 res; const Scalar tx = Scalar(2)*this->x(); const Scalar ty = Scalar(2)*this->y(); const Scalar tz = Scalar(2)*this->z(); const Scalar twx = tx*this->w(); const Scalar twy = ty*this->w(); const Scalar twz = tz*this->w(); const Scalar txx = tx*this->x(); const Scalar txy = ty*this->x(); const Scalar txz = tz*this->x(); const Scalar tyy = ty*this->y(); const Scalar tyz = tz*this->y(); const Scalar tzz = tz*this->z(); res.coeffRef(0,0) = Scalar(1)-(tyy+tzz); res.coeffRef(0,1) = txy-twz; res.coeffRef(0,2) = txz+twy; res.coeffRef(1,0) = txy+twz; res.coeffRef(1,1) = Scalar(1)-(txx+tzz); res.coeffRef(1,2) = tyz-twx; res.coeffRef(2,0) = txz-twy; res.coeffRef(2,1) = tyz+twx; res.coeffRef(2,2) = Scalar(1)-(txx+tyy); return res; } /** Sets \c *this to be a quaternion representing a rotation between * the two arbitrary vectors \a a and \a b. In other words, the built * rotation represent a rotation sending the line of direction \a a * to the line of direction \a b, both lines passing through the origin. * * \returns a reference to \c *this. * * Note that the two input vectors do \b not have to be normalized, and * do not need to have the same norm. */ template template inline Derived& QuaternionBase::setFromTwoVectors(const MatrixBase& a, const MatrixBase& b) { using std::max; Vector3 v0 = a.normalized(); Vector3 v1 = b.normalized(); Scalar c = v1.dot(v0); // if dot == -1, vectors are nearly opposites // => accuraletly compute the rotation axis by computing the // intersection of the two planes. This is done by solving: // x^T v0 = 0 // x^T v1 = 0 // under the constraint: // ||x|| = 1 // which yields a singular value problem if (c < Scalar(-1)+NumTraits::dummy_precision()) { c = max(c,-1); Matrix m; m << v0.transpose(), v1.transpose(); JacobiSVD > svd(m, ComputeFullV); Vector3 axis = svd.matrixV().col(2); Scalar w2 = (Scalar(1)+c)*Scalar(0.5); this->w() = internal::sqrt(w2); this->vec() = axis * internal::sqrt(Scalar(1) - w2); return derived(); } Vector3 axis = v0.cross(v1); Scalar s = internal::sqrt((Scalar(1)+c)*Scalar(2)); Scalar invs = Scalar(1)/s; this->vec() = axis * invs; this->w() = s * Scalar(0.5); return derived(); } /** Returns a quaternion representing a rotation between * the two arbitrary vectors \a a and \a b. In other words, the built * rotation represent a rotation sending the line of direction \a a * to the line of direction \a b, both lines passing through the origin. * * \returns resulting quaternion * * Note that the two input vectors do \b not have to be normalized, and * do not need to have the same norm. */ template template Quaternion Quaternion::FromTwoVectors(const MatrixBase& a, const MatrixBase& b) { Quaternion quat; quat.setFromTwoVectors(a, b); return quat; } /** \returns the multiplicative inverse of \c *this * Note that in most cases, i.e., if you simply want the opposite rotation, * and/or the quaternion is normalized, then it is enough to use the conjugate. * * \sa QuaternionBase::conjugate() */ template inline Quaternion::Scalar> QuaternionBase::inverse() const { // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ?? Scalar n2 = this->squaredNorm(); if (n2 > 0) return Quaternion(conjugate().coeffs() / n2); else { // return an invalid result to flag the error return Quaternion(Coefficients::Zero()); } } /** \returns the conjugate of the \c *this which is equal to the multiplicative inverse * if the quaternion is normalized. * The conjugate of a quaternion represents the opposite rotation. * * \sa Quaternion2::inverse() */ template inline Quaternion::Scalar> QuaternionBase::conjugate() const { return Quaternion(this->w(),-this->x(),-this->y(),-this->z()); } /** \returns the angle (in radian) between two rotations * \sa dot() */ template template inline typename internal::traits::Scalar QuaternionBase::angularDistance(const QuaternionBase& other) const { using std::acos; double d = internal::abs(this->dot(other)); if (d>=1.0) return Scalar(0); return static_cast(2 * acos(d)); } /** \returns the spherical linear interpolation between the two quaternions * \c *this and \a other at the parameter \a t */ template template Quaternion::Scalar> QuaternionBase::slerp(Scalar t, const QuaternionBase& other) const { using std::acos; static const Scalar one = Scalar(1) - NumTraits::epsilon(); Scalar d = this->dot(other); Scalar absD = internal::abs(d); Scalar scale0; Scalar scale1; if(absD>=one) { scale0 = Scalar(1) - t; scale1 = t; } else { // theta is the angle between the 2 quaternions Scalar theta = acos(absD); Scalar sinTheta = internal::sin(theta); scale0 = internal::sin( ( Scalar(1) - t ) * theta) / sinTheta; scale1 = internal::sin( ( t * theta) ) / sinTheta; } if(d<0) scale1 = -scale1; return Quaternion(scale0 * coeffs() + scale1 * other.coeffs()); } namespace internal { // set from a rotation matrix template struct quaternionbase_assign_impl { typedef typename Other::Scalar Scalar; typedef DenseIndex Index; template static inline void run(QuaternionBase& q, const Other& mat) { // This algorithm comes from "Quaternion Calculus and Fast Animation", // Ken Shoemake, 1987 SIGGRAPH course notes Scalar t = mat.trace(); if (t > Scalar(0)) { t = sqrt(t + Scalar(1.0)); q.w() = Scalar(0.5)*t; t = Scalar(0.5)/t; q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t; q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t; q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t; } else { DenseIndex i = 0; if (mat.coeff(1,1) > mat.coeff(0,0)) i = 1; if (mat.coeff(2,2) > mat.coeff(i,i)) i = 2; DenseIndex j = (i+1)%3; DenseIndex k = (j+1)%3; t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0)); q.coeffs().coeffRef(i) = Scalar(0.5) * t; t = Scalar(0.5)/t; q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t; q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t; q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t; } } }; // set from a vector of coefficients assumed to be a quaternion template struct quaternionbase_assign_impl { typedef typename Other::Scalar Scalar; template static inline void run(QuaternionBase& q, const Other& vec) { q.coeffs() = vec; } }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_QUATERNION_H