Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Eigen/Eigen/src/Eigen2Support/Geometry/Transform.h @ 9562

Last change on this file since 9562 was 9562, checked in by gkronber, 11 years ago

#1967 worked on Gaussian process evolution.

File size: 27.6 KB
Line 
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra. Eigen itself is part of the KDE project.
3//
4// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
5// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
12
13namespace Eigen {
14
15// Note that we have to pass Dim and HDim because it is not allowed to use a template
16// parameter to define a template specialization. To be more precise, in the following
17// specializations, it is not allowed to use Dim+1 instead of HDim.
18template< typename Other,
19          int Dim,
20          int HDim,
21          int OtherRows=Other::RowsAtCompileTime,
22          int OtherCols=Other::ColsAtCompileTime>
23struct ei_transform_product_impl;
24
25/** \geometry_module \ingroup Geometry_Module
26  *
27  * \class Transform
28  *
29  * \brief Represents an homogeneous transformation in a N dimensional space
30  *
31  * \param _Scalar the scalar type, i.e., the type of the coefficients
32  * \param _Dim the dimension of the space
33  *
34  * The homography is internally represented and stored as a (Dim+1)^2 matrix which
35  * is available through the matrix() method.
36  *
37  * Conversion methods from/to Qt's QMatrix and QTransform are available if the
38  * preprocessor token EIGEN_QT_SUPPORT is defined.
39  *
40  * \sa class Matrix, class Quaternion
41  */
42template<typename _Scalar, int _Dim>
43class Transform
44{
45public:
46  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1))
47  enum {
48    Dim = _Dim,     ///< space dimension in which the transformation holds
49    HDim = _Dim+1   ///< size of a respective homogeneous vector
50  };
51  /** the scalar type of the coefficients */
52  typedef _Scalar Scalar;
53  /** type of the matrix used to represent the transformation */
54  typedef Matrix<Scalar,HDim,HDim> MatrixType;
55  /** type of the matrix used to represent the linear part of the transformation */
56  typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
57  /** type of read/write reference to the linear part of the transformation */
58  typedef Block<MatrixType,Dim,Dim> LinearPart;
59  /** type of read/write reference to the linear part of the transformation */
60  typedef const Block<const MatrixType,Dim,Dim> ConstLinearPart;
61  /** type of a vector */
62  typedef Matrix<Scalar,Dim,1> VectorType;
63  /** type of a read/write reference to the translation part of the rotation */
64  typedef Block<MatrixType,Dim,1> TranslationPart;
65  /** type of a read/write reference to the translation part of the rotation */
66  typedef const Block<const MatrixType,Dim,1> ConstTranslationPart;
67  /** corresponding translation type */
68  typedef Translation<Scalar,Dim> TranslationType;
69  /** corresponding scaling transformation type */
70  typedef Scaling<Scalar,Dim> ScalingType;
71
72protected:
73
74  MatrixType m_matrix;
75
76public:
77
78  /** Default constructor without initialization of the coefficients. */
79  inline Transform() { }
80
81  inline Transform(const Transform& other)
82  {
83    m_matrix = other.m_matrix;
84  }
85
86  inline explicit Transform(const TranslationType& t) { *this = t; }
87  inline explicit Transform(const ScalingType& s) { *this = s; }
88  template<typename Derived>
89  inline explicit Transform(const RotationBase<Derived, Dim>& r) { *this = r; }
90
91  inline Transform& operator=(const Transform& other)
92  { m_matrix = other.m_matrix; return *this; }
93
94  template<typename OtherDerived, bool BigMatrix> // MSVC 2005 will commit suicide if BigMatrix has a default value
95  struct construct_from_matrix
96  {
97    static inline void run(Transform *transform, const MatrixBase<OtherDerived>& other)
98    {
99      transform->matrix() = other;
100    }
101  };
102
103  template<typename OtherDerived> struct construct_from_matrix<OtherDerived, true>
104  {
105    static inline void run(Transform *transform, const MatrixBase<OtherDerived>& other)
106    {
107      transform->linear() = other;
108      transform->translation().setZero();
109      transform->matrix()(Dim,Dim) = Scalar(1);
110      transform->matrix().template block<1,Dim>(Dim,0).setZero();
111    }
112  };
113
114  /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */
115  template<typename OtherDerived>
116  inline explicit Transform(const MatrixBase<OtherDerived>& other)
117  {
118    construct_from_matrix<OtherDerived, int(OtherDerived::RowsAtCompileTime) == Dim>::run(this, other);
119  }
120
121  /** Set \c *this from a (Dim+1)^2 matrix. */
122  template<typename OtherDerived>
123  inline Transform& operator=(const MatrixBase<OtherDerived>& other)
124  { m_matrix = other; return *this; }
125
126  #ifdef EIGEN_QT_SUPPORT
127  inline Transform(const QMatrix& other);
128  inline Transform& operator=(const QMatrix& other);
129  inline QMatrix toQMatrix(void) const;
130  inline Transform(const QTransform& other);
131  inline Transform& operator=(const QTransform& other);
132  inline QTransform toQTransform(void) const;
133  #endif
134
135  /** shortcut for m_matrix(row,col);
136    * \sa MatrixBase::operaror(int,int) const */
137  inline Scalar operator() (int row, int col) const { return m_matrix(row,col); }
138  /** shortcut for m_matrix(row,col);
139    * \sa MatrixBase::operaror(int,int) */
140  inline Scalar& operator() (int row, int col) { return m_matrix(row,col); }
141
142  /** \returns a read-only expression of the transformation matrix */
143  inline const MatrixType& matrix() const { return m_matrix; }
144  /** \returns a writable expression of the transformation matrix */
145  inline MatrixType& matrix() { return m_matrix; }
146
147  /** \returns a read-only expression of the linear (linear) part of the transformation */
148  inline ConstLinearPart linear() const { return m_matrix.template block<Dim,Dim>(0,0); }
149  /** \returns a writable expression of the linear (linear) part of the transformation */
150  inline LinearPart linear() { return m_matrix.template block<Dim,Dim>(0,0); }
151
152  /** \returns a read-only expression of the translation vector of the transformation */
153  inline ConstTranslationPart translation() const { return m_matrix.template block<Dim,1>(0,Dim); }
154  /** \returns a writable expression of the translation vector of the transformation */
155  inline TranslationPart translation() { return m_matrix.template block<Dim,1>(0,Dim); }
156
157  /** \returns an expression of the product between the transform \c *this and a matrix expression \a other
158  *
159  * The right hand side \a other might be either:
160  * \li a vector of size Dim,
161  * \li an homogeneous vector of size Dim+1,
162  * \li a transformation matrix of size Dim+1 x Dim+1.
163  */
164  // note: this function is defined here because some compilers cannot find the respective declaration
165  template<typename OtherDerived>
166  inline const typename ei_transform_product_impl<OtherDerived,_Dim,_Dim+1>::ResultType
167  operator * (const MatrixBase<OtherDerived> &other) const
168  { return ei_transform_product_impl<OtherDerived,Dim,HDim>::run(*this,other.derived()); }
169
170  /** \returns the product expression of a transformation matrix \a a times a transform \a b
171    * The transformation matrix \a a must have a Dim+1 x Dim+1 sizes. */
172  template<typename OtherDerived>
173  friend inline const typename ProductReturnType<OtherDerived,MatrixType>::Type
174  operator * (const MatrixBase<OtherDerived> &a, const Transform &b)
175  { return a.derived() * b.matrix(); }
176
177  /** Contatenates two transformations */
178  inline const Transform
179  operator * (const Transform& other) const
180  { return Transform(m_matrix * other.matrix()); }
181
182  /** \sa MatrixBase::setIdentity() */
183  void setIdentity() { m_matrix.setIdentity(); }
184  static const typename MatrixType::IdentityReturnType Identity()
185  {
186    return MatrixType::Identity();
187  }
188
189  template<typename OtherDerived>
190  inline Transform& scale(const MatrixBase<OtherDerived> &other);
191
192  template<typename OtherDerived>
193  inline Transform& prescale(const MatrixBase<OtherDerived> &other);
194
195  inline Transform& scale(Scalar s);
196  inline Transform& prescale(Scalar s);
197
198  template<typename OtherDerived>
199  inline Transform& translate(const MatrixBase<OtherDerived> &other);
200
201  template<typename OtherDerived>
202  inline Transform& pretranslate(const MatrixBase<OtherDerived> &other);
203
204  template<typename RotationType>
205  inline Transform& rotate(const RotationType& rotation);
206
207  template<typename RotationType>
208  inline Transform& prerotate(const RotationType& rotation);
209
210  Transform& shear(Scalar sx, Scalar sy);
211  Transform& preshear(Scalar sx, Scalar sy);
212
213  inline Transform& operator=(const TranslationType& t);
214  inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); }
215  inline Transform operator*(const TranslationType& t) const;
216
217  inline Transform& operator=(const ScalingType& t);
218  inline Transform& operator*=(const ScalingType& s) { return scale(s.coeffs()); }
219  inline Transform operator*(const ScalingType& s) const;
220  friend inline Transform operator*(const LinearMatrixType& mat, const Transform& t)
221  {
222    Transform res = t;
223    res.matrix().row(Dim) = t.matrix().row(Dim);
224    res.matrix().template block<Dim,HDim>(0,0) = (mat * t.matrix().template block<Dim,HDim>(0,0)).lazy();
225    return res;
226  }
227
228  template<typename Derived>
229  inline Transform& operator=(const RotationBase<Derived,Dim>& r);
230  template<typename Derived>
231  inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); }
232  template<typename Derived>
233  inline Transform operator*(const RotationBase<Derived,Dim>& r) const;
234
235  LinearMatrixType rotation() const;
236  template<typename RotationMatrixType, typename ScalingMatrixType>
237  void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const;
238  template<typename ScalingMatrixType, typename RotationMatrixType>
239  void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const;
240
241  template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
242  Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
243    const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale);
244
245  inline const MatrixType inverse(TransformTraits traits = Affine) const;
246
247  /** \returns a const pointer to the column major internal matrix */
248  const Scalar* data() const { return m_matrix.data(); }
249  /** \returns a non-const pointer to the column major internal matrix */
250  Scalar* data() { return m_matrix.data(); }
251
252  /** \returns \c *this with scalar type casted to \a NewScalarType
253    *
254    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
255    * then this function smartly returns a const reference to \c *this.
256    */
257  template<typename NewScalarType>
258  inline typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim> >::type cast() const
259  { return typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim> >::type(*this); }
260
261  /** Copy constructor with scalar type conversion */
262  template<typename OtherScalarType>
263  inline explicit Transform(const Transform<OtherScalarType,Dim>& other)
264  { m_matrix = other.matrix().template cast<Scalar>(); }
265
266  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
267    * determined by \a prec.
268    *
269    * \sa MatrixBase::isApprox() */
270  bool isApprox(const Transform& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
271  { return m_matrix.isApprox(other.m_matrix, prec); }
272
273  #ifdef EIGEN_TRANSFORM_PLUGIN
274  #include EIGEN_TRANSFORM_PLUGIN
275  #endif
276
277protected:
278
279};
280
281/** \ingroup Geometry_Module */
282typedef Transform<float,2> Transform2f;
283/** \ingroup Geometry_Module */
284typedef Transform<float,3> Transform3f;
285/** \ingroup Geometry_Module */
286typedef Transform<double,2> Transform2d;
287/** \ingroup Geometry_Module */
288typedef Transform<double,3> Transform3d;
289
290/**************************
291*** Optional QT support ***
292**************************/
293
294#ifdef EIGEN_QT_SUPPORT
295/** Initialises \c *this from a QMatrix assuming the dimension is 2.
296  *
297  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
298  */
299template<typename Scalar, int Dim>
300Transform<Scalar,Dim>::Transform(const QMatrix& other)
301{
302  *this = other;
303}
304
305/** Set \c *this from a QMatrix assuming the dimension is 2.
306  *
307  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
308  */
309template<typename Scalar, int Dim>
310Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QMatrix& other)
311{
312  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
313  m_matrix << other.m11(), other.m21(), other.dx(),
314              other.m12(), other.m22(), other.dy(),
315              0, 0, 1;
316   return *this;
317}
318
319/** \returns a QMatrix from \c *this assuming the dimension is 2.
320  *
321  * \warning this convertion might loss data if \c *this is not affine
322  *
323  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
324  */
325template<typename Scalar, int Dim>
326QMatrix Transform<Scalar,Dim>::toQMatrix(void) const
327{
328  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
329  return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
330                 m_matrix.coeff(0,1), m_matrix.coeff(1,1),
331                 m_matrix.coeff(0,2), m_matrix.coeff(1,2));
332}
333
334/** Initialises \c *this from a QTransform assuming the dimension is 2.
335  *
336  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
337  */
338template<typename Scalar, int Dim>
339Transform<Scalar,Dim>::Transform(const QTransform& other)
340{
341  *this = other;
342}
343
344/** Set \c *this from a QTransform assuming the dimension is 2.
345  *
346  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
347  */
348template<typename Scalar, int Dim>
349Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QTransform& other)
350{
351  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
352  m_matrix << other.m11(), other.m21(), other.dx(),
353              other.m12(), other.m22(), other.dy(),
354              other.m13(), other.m23(), other.m33();
355   return *this;
356}
357
358/** \returns a QTransform from \c *this assuming the dimension is 2.
359  *
360  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
361  */
362template<typename Scalar, int Dim>
363QTransform Transform<Scalar,Dim>::toQTransform(void) const
364{
365  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
366  return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0),
367                    m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1),
368                    m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2));
369}
370#endif
371
372/*********************
373*** Procedural API ***
374*********************/
375
376/** Applies on the right the non uniform scale transformation represented
377  * by the vector \a other to \c *this and returns a reference to \c *this.
378  * \sa prescale()
379  */
380template<typename Scalar, int Dim>
381template<typename OtherDerived>
382Transform<Scalar,Dim>&
383Transform<Scalar,Dim>::scale(const MatrixBase<OtherDerived> &other)
384{
385  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
386  linear() = (linear() * other.asDiagonal()).lazy();
387  return *this;
388}
389
390/** Applies on the right a uniform scale of a factor \a c to \c *this
391  * and returns a reference to \c *this.
392  * \sa prescale(Scalar)
393  */
394template<typename Scalar, int Dim>
395inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::scale(Scalar s)
396{
397  linear() *= s;
398  return *this;
399}
400
401/** Applies on the left the non uniform scale transformation represented
402  * by the vector \a other to \c *this and returns a reference to \c *this.
403  * \sa scale()
404  */
405template<typename Scalar, int Dim>
406template<typename OtherDerived>
407Transform<Scalar,Dim>&
408Transform<Scalar,Dim>::prescale(const MatrixBase<OtherDerived> &other)
409{
410  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
411  m_matrix.template block<Dim,HDim>(0,0) = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0)).lazy();
412  return *this;
413}
414
415/** Applies on the left a uniform scale of a factor \a c to \c *this
416  * and returns a reference to \c *this.
417  * \sa scale(Scalar)
418  */
419template<typename Scalar, int Dim>
420inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::prescale(Scalar s)
421{
422  m_matrix.template corner<Dim,HDim>(TopLeft) *= s;
423  return *this;
424}
425
426/** Applies on the right the translation matrix represented by the vector \a other
427  * to \c *this and returns a reference to \c *this.
428  * \sa pretranslate()
429  */
430template<typename Scalar, int Dim>
431template<typename OtherDerived>
432Transform<Scalar,Dim>&
433Transform<Scalar,Dim>::translate(const MatrixBase<OtherDerived> &other)
434{
435  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
436  translation() += linear() * other;
437  return *this;
438}
439
440/** Applies on the left the translation matrix represented by the vector \a other
441  * to \c *this and returns a reference to \c *this.
442  * \sa translate()
443  */
444template<typename Scalar, int Dim>
445template<typename OtherDerived>
446Transform<Scalar,Dim>&
447Transform<Scalar,Dim>::pretranslate(const MatrixBase<OtherDerived> &other)
448{
449  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
450  translation() += other;
451  return *this;
452}
453
454/** Applies on the right the rotation represented by the rotation \a rotation
455  * to \c *this and returns a reference to \c *this.
456  *
457  * The template parameter \a RotationType is the type of the rotation which
458  * must be known by ei_toRotationMatrix<>.
459  *
460  * Natively supported types includes:
461  *   - any scalar (2D),
462  *   - a Dim x Dim matrix expression,
463  *   - a Quaternion (3D),
464  *   - a AngleAxis (3D)
465  *
466  * This mechanism is easily extendable to support user types such as Euler angles,
467  * or a pair of Quaternion for 4D rotations.
468  *
469  * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType)
470  */
471template<typename Scalar, int Dim>
472template<typename RotationType>
473Transform<Scalar,Dim>&
474Transform<Scalar,Dim>::rotate(const RotationType& rotation)
475{
476  linear() *= ei_toRotationMatrix<Scalar,Dim>(rotation);
477  return *this;
478}
479
480/** Applies on the left the rotation represented by the rotation \a rotation
481  * to \c *this and returns a reference to \c *this.
482  *
483  * See rotate() for further details.
484  *
485  * \sa rotate()
486  */
487template<typename Scalar, int Dim>
488template<typename RotationType>
489Transform<Scalar,Dim>&
490Transform<Scalar,Dim>::prerotate(const RotationType& rotation)
491{
492  m_matrix.template block<Dim,HDim>(0,0) = ei_toRotationMatrix<Scalar,Dim>(rotation)
493                                         * m_matrix.template block<Dim,HDim>(0,0);
494  return *this;
495}
496
497/** Applies on the right the shear transformation represented
498  * by the vector \a other to \c *this and returns a reference to \c *this.
499  * \warning 2D only.
500  * \sa preshear()
501  */
502template<typename Scalar, int Dim>
503Transform<Scalar,Dim>&
504Transform<Scalar,Dim>::shear(Scalar sx, Scalar sy)
505{
506  EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
507  VectorType tmp = linear().col(0)*sy + linear().col(1);
508  linear() << linear().col(0) + linear().col(1)*sx, tmp;
509  return *this;
510}
511
512/** Applies on the left the shear transformation represented
513  * by the vector \a other to \c *this and returns a reference to \c *this.
514  * \warning 2D only.
515  * \sa shear()
516  */
517template<typename Scalar, int Dim>
518Transform<Scalar,Dim>&
519Transform<Scalar,Dim>::preshear(Scalar sx, Scalar sy)
520{
521  EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
522  m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0);
523  return *this;
524}
525
526/******************************************************
527*** Scaling, Translation and Rotation compatibility ***
528******************************************************/
529
530template<typename Scalar, int Dim>
531inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const TranslationType& t)
532{
533  linear().setIdentity();
534  translation() = t.vector();
535  m_matrix.template block<1,Dim>(Dim,0).setZero();
536  m_matrix(Dim,Dim) = Scalar(1);
537  return *this;
538}
539
540template<typename Scalar, int Dim>
541inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const TranslationType& t) const
542{
543  Transform res = *this;
544  res.translate(t.vector());
545  return res;
546}
547
548template<typename Scalar, int Dim>
549inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const ScalingType& s)
550{
551  m_matrix.setZero();
552  linear().diagonal() = s.coeffs();
553  m_matrix.coeffRef(Dim,Dim) = Scalar(1);
554  return *this;
555}
556
557template<typename Scalar, int Dim>
558inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const ScalingType& s) const
559{
560  Transform res = *this;
561  res.scale(s.coeffs());
562  return res;
563}
564
565template<typename Scalar, int Dim>
566template<typename Derived>
567inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const RotationBase<Derived,Dim>& r)
568{
569  linear() = ei_toRotationMatrix<Scalar,Dim>(r);
570  translation().setZero();
571  m_matrix.template block<1,Dim>(Dim,0).setZero();
572  m_matrix.coeffRef(Dim,Dim) = Scalar(1);
573  return *this;
574}
575
576template<typename Scalar, int Dim>
577template<typename Derived>
578inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const RotationBase<Derived,Dim>& r) const
579{
580  Transform res = *this;
581  res.rotate(r.derived());
582  return res;
583}
584
585/************************
586*** Special functions ***
587************************/
588
589/** \returns the rotation part of the transformation
590  * \nonstableyet
591  *
592  * \svd_module
593  *
594  * \sa computeRotationScaling(), computeScalingRotation(), class SVD
595  */
596template<typename Scalar, int Dim>
597typename Transform<Scalar,Dim>::LinearMatrixType
598Transform<Scalar,Dim>::rotation() const
599{
600  LinearMatrixType result;
601  computeRotationScaling(&result, (LinearMatrixType*)0);
602  return result;
603}
604
605
606/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
607  * not necessarily positive.
608  *
609  * If either pointer is zero, the corresponding computation is skipped.
610  *
611  * \nonstableyet
612  *
613  * \svd_module
614  *
615  * \sa computeScalingRotation(), rotation(), class SVD
616  */
617template<typename Scalar, int Dim>
618template<typename RotationMatrixType, typename ScalingMatrixType>
619void Transform<Scalar,Dim>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const
620{
621  JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU|ComputeFullV);
622  Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
623  Matrix<Scalar, Dim, 1> sv(svd.singularValues());
624  sv.coeffRef(0) *= x;
625  if(scaling)
626  {
627    scaling->noalias() = svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint();
628  }
629  if(rotation)
630  {
631    LinearMatrixType m(svd.matrixU());
632    m.col(0) /= x;
633    rotation->noalias() = m * svd.matrixV().adjoint();
634  }
635}
636
637/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
638  * not necessarily positive.
639  *
640  * If either pointer is zero, the corresponding computation is skipped.
641  *
642  * \nonstableyet
643  *
644  * \svd_module
645  *
646  * \sa computeRotationScaling(), rotation(), class SVD
647  */
648template<typename Scalar, int Dim>
649template<typename ScalingMatrixType, typename RotationMatrixType>
650void Transform<Scalar,Dim>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const
651{
652  JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU|ComputeFullV);
653  Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
654  Matrix<Scalar, Dim, 1> sv(svd.singularValues());
655  sv.coeffRef(0) *= x;
656  if(scaling)
657  {
658    scaling->noalias() = svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint();
659  }
660  if(rotation)
661  {
662    LinearMatrixType m(svd.matrixU());
663    m.col(0) /= x;
664    rotation->noalias() = m * svd.matrixV().adjoint();
665  }
666}
667
668/** Convenient method to set \c *this from a position, orientation and scale
669  * of a 3D object.
670  */
671template<typename Scalar, int Dim>
672template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
673Transform<Scalar,Dim>&
674Transform<Scalar,Dim>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
675  const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale)
676{
677  linear() = ei_toRotationMatrix<Scalar,Dim>(orientation);
678  linear() *= scale.asDiagonal();
679  translation() = position;
680  m_matrix.template block<1,Dim>(Dim,0).setZero();
681  m_matrix(Dim,Dim) = Scalar(1);
682  return *this;
683}
684
685/** \nonstableyet
686  *
687  * \returns the inverse transformation matrix according to some given knowledge
688  * on \c *this.
689  *
690  * \param traits allows to optimize the inversion process when the transformion
691  * is known to be not a general transformation. The possible values are:
692  *  - Projective if the transformation is not necessarily affine, i.e., if the
693  *    last row is not guaranteed to be [0 ... 0 1]
694  *  - Affine is the default, the last row is assumed to be [0 ... 0 1]
695  *  - Isometry if the transformation is only a concatenations of translations
696  *    and rotations.
697  *
698  * \warning unless \a traits is always set to NoShear or NoScaling, this function
699  * requires the generic inverse method of MatrixBase defined in the LU module. If
700  * you forget to include this module, then you will get hard to debug linking errors.
701  *
702  * \sa MatrixBase::inverse()
703  */
704template<typename Scalar, int Dim>
705inline const typename Transform<Scalar,Dim>::MatrixType
706Transform<Scalar,Dim>::inverse(TransformTraits traits) const
707{
708  if (traits == Projective)
709  {
710    return m_matrix.inverse();
711  }
712  else
713  {
714    MatrixType res;
715    if (traits == Affine)
716    {
717      res.template corner<Dim,Dim>(TopLeft) = linear().inverse();
718    }
719    else if (traits == Isometry)
720    {
721      res.template corner<Dim,Dim>(TopLeft) = linear().transpose();
722    }
723    else
724    {
725      ei_assert("invalid traits value in Transform::inverse()");
726    }
727    // translation and remaining parts
728    res.template corner<Dim,1>(TopRight) = - res.template corner<Dim,Dim>(TopLeft) * translation();
729    res.template corner<1,Dim>(BottomLeft).setZero();
730    res.coeffRef(Dim,Dim) = Scalar(1);
731    return res;
732  }
733}
734
735/*****************************************************
736*** Specializations of operator* with a MatrixBase ***
737*****************************************************/
738
739template<typename Other, int Dim, int HDim>
740struct ei_transform_product_impl<Other,Dim,HDim, HDim,HDim>
741{
742  typedef Transform<typename Other::Scalar,Dim> TransformType;
743  typedef typename TransformType::MatrixType MatrixType;
744  typedef typename ProductReturnType<MatrixType,Other>::Type ResultType;
745  static ResultType run(const TransformType& tr, const Other& other)
746  { return tr.matrix() * other; }
747};
748
749template<typename Other, int Dim, int HDim>
750struct ei_transform_product_impl<Other,Dim,HDim, Dim,Dim>
751{
752  typedef Transform<typename Other::Scalar,Dim> TransformType;
753  typedef typename TransformType::MatrixType MatrixType;
754  typedef TransformType ResultType;
755  static ResultType run(const TransformType& tr, const Other& other)
756  {
757    TransformType res;
758    res.translation() = tr.translation();
759    res.matrix().row(Dim) = tr.matrix().row(Dim);
760    res.linear() = (tr.linear() * other).lazy();
761    return res;
762  }
763};
764
765template<typename Other, int Dim, int HDim>
766struct ei_transform_product_impl<Other,Dim,HDim, HDim,1>
767{
768  typedef Transform<typename Other::Scalar,Dim> TransformType;
769  typedef typename TransformType::MatrixType MatrixType;
770  typedef typename ProductReturnType<MatrixType,Other>::Type ResultType;
771  static ResultType run(const TransformType& tr, const Other& other)
772  { return tr.matrix() * other; }
773};
774
775template<typename Other, int Dim, int HDim>
776struct ei_transform_product_impl<Other,Dim,HDim, Dim,1>
777{
778  typedef typename Other::Scalar Scalar;
779  typedef Transform<Scalar,Dim> TransformType;
780  typedef Matrix<Scalar,Dim,1> ResultType;
781  static ResultType run(const TransformType& tr, const Other& other)
782  { return ((tr.linear() * other) + tr.translation())
783          * (Scalar(1) / ( (tr.matrix().template block<1,Dim>(Dim,0) * other).coeff(0) + tr.matrix().coeff(Dim,Dim))); }
784};
785
786} // end namespace Eigen
Note: See TracBrowser for help on using the repository browser.