Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Eigen/Eigen/src/Eigen2Support/Geometry/Rotation2D.h @ 9562

Last change on this file since 9562 was 9562, checked in by gkronber, 11 years ago

#1967 worked on Gaussian process evolution.

File size: 4.9 KB
Line 
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra. Eigen itself is part of the KDE project.
3//
4// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
11
12namespace Eigen {
13
14/** \geometry_module \ingroup Geometry_Module
15  *
16  * \class Rotation2D
17  *
18  * \brief Represents a rotation/orientation in a 2 dimensional space.
19  *
20  * \param _Scalar the scalar type, i.e., the type of the coefficients
21  *
22  * This class is equivalent to a single scalar representing a counter clock wise rotation
23  * as a single angle in radian. It provides some additional features such as the automatic
24  * conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar
25  * interface to Quaternion in order to facilitate the writing of generic algorithms
26  * dealing with rotations.
27  *
28  * \sa class Quaternion, class Transform
29  */
30template<typename _Scalar> struct ei_traits<Rotation2D<_Scalar> >
31{
32  typedef _Scalar Scalar;
33};
34
35template<typename _Scalar>
36class Rotation2D : public RotationBase<Rotation2D<_Scalar>,2>
37{
38  typedef RotationBase<Rotation2D<_Scalar>,2> Base;
39
40public:
41
42  using Base::operator*;
43
44  enum { Dim = 2 };
45  /** the scalar type of the coefficients */
46  typedef _Scalar Scalar;
47  typedef Matrix<Scalar,2,1> Vector2;
48  typedef Matrix<Scalar,2,2> Matrix2;
49
50protected:
51
52  Scalar m_angle;
53
54public:
55
56  /** Construct a 2D counter clock wise rotation from the angle \a a in radian. */
57  inline Rotation2D(Scalar a) : m_angle(a) {}
58
59  /** \returns the rotation angle */
60  inline Scalar angle() const { return m_angle; }
61
62  /** \returns a read-write reference to the rotation angle */
63  inline Scalar& angle() { return m_angle; }
64
65  /** \returns the inverse rotation */
66  inline Rotation2D inverse() const { return -m_angle; }
67
68  /** Concatenates two rotations */
69  inline Rotation2D operator*(const Rotation2D& other) const
70  { return m_angle + other.m_angle; }
71
72  /** Concatenates two rotations */
73  inline Rotation2D& operator*=(const Rotation2D& other)
74  { return m_angle += other.m_angle; return *this; }
75
76  /** Applies the rotation to a 2D vector */
77  Vector2 operator* (const Vector2& vec) const
78  { return toRotationMatrix() * vec; }
79
80  template<typename Derived>
81  Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m);
82  Matrix2 toRotationMatrix(void) const;
83
84  /** \returns the spherical interpolation between \c *this and \a other using
85    * parameter \a t. It is in fact equivalent to a linear interpolation.
86    */
87  inline Rotation2D slerp(Scalar t, const Rotation2D& other) const
88  { return m_angle * (1-t) + other.angle() * t; }
89
90  /** \returns \c *this with scalar type casted to \a NewScalarType
91    *
92    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
93    * then this function smartly returns a const reference to \c *this.
94    */
95  template<typename NewScalarType>
96  inline typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const
97  { return typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type(*this); }
98
99  /** Copy constructor with scalar type conversion */
100  template<typename OtherScalarType>
101  inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other)
102  {
103    m_angle = Scalar(other.angle());
104  }
105
106  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
107    * determined by \a prec.
108    *
109    * \sa MatrixBase::isApprox() */
110  bool isApprox(const Rotation2D& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
111  { return ei_isApprox(m_angle,other.m_angle, prec); }
112};
113
114/** \ingroup Geometry_Module
115  * single precision 2D rotation type */
116typedef Rotation2D<float> Rotation2Df;
117/** \ingroup Geometry_Module
118  * double precision 2D rotation type */
119typedef Rotation2D<double> Rotation2Dd;
120
121/** Set \c *this from a 2x2 rotation matrix \a mat.
122  * In other words, this function extract the rotation angle
123  * from the rotation matrix.
124  */
125template<typename Scalar>
126template<typename Derived>
127Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
128{
129  EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE)
130  m_angle = ei_atan2(mat.coeff(1,0), mat.coeff(0,0));
131  return *this;
132}
133
134/** Constructs and \returns an equivalent 2x2 rotation matrix.
135  */
136template<typename Scalar>
137typename Rotation2D<Scalar>::Matrix2
138Rotation2D<Scalar>::toRotationMatrix(void) const
139{
140  Scalar sinA = ei_sin(m_angle);
141  Scalar cosA = ei_cos(m_angle);
142  return (Matrix2() << cosA, -sinA, sinA, cosA).finished();
143}
144
145} // end namespace Eigen
Note: See TracBrowser for help on using the repository browser.