Free cookie consent management tool by TermsFeed Policy Generator

source: branches/HeuristicLab.Problems.GaussianProcessTuning/HeuristicLab.Eigen/Eigen/src/Eigen2Support/Geometry/Hyperplane.h @ 9562

Last change on this file since 9562 was 9562, checked in by gkronber, 11 years ago

#1967 worked on Gaussian process evolution.

File size: 10.4 KB
Line 
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra. Eigen itself is part of the KDE project.
3//
4// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
5// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
12
13namespace Eigen {
14
15/** \geometry_module \ingroup Geometry_Module
16  *
17  * \class Hyperplane
18  *
19  * \brief A hyperplane
20  *
21  * A hyperplane is an affine subspace of dimension n-1 in a space of dimension n.
22  * For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane.
23  *
24  * \param _Scalar the scalar type, i.e., the type of the coefficients
25  * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
26  *             Notice that the dimension of the hyperplane is _AmbientDim-1.
27  *
28  * This class represents an hyperplane as the zero set of the implicit equation
29  * \f$ n \cdot x + d = 0 \f$ where \f$ n \f$ is a unit normal vector of the plane (linear part)
30  * and \f$ d \f$ is the distance (offset) to the origin.
31  */
32template <typename _Scalar, int _AmbientDim>
33class Hyperplane
34{
35public:
36  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1)
37  enum { AmbientDimAtCompileTime = _AmbientDim };
38  typedef _Scalar Scalar;
39  typedef typename NumTraits<Scalar>::Real RealScalar;
40  typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
41  typedef Matrix<Scalar,int(AmbientDimAtCompileTime)==Dynamic
42                        ? Dynamic
43                        : int(AmbientDimAtCompileTime)+1,1> Coefficients;
44  typedef Block<Coefficients,AmbientDimAtCompileTime,1> NormalReturnType;
45
46  /** Default constructor without initialization */
47  inline explicit Hyperplane() {}
48
49  /** Constructs a dynamic-size hyperplane with \a _dim the dimension
50    * of the ambient space */
51  inline explicit Hyperplane(int _dim) : m_coeffs(_dim+1) {}
52
53  /** Construct a plane from its normal \a n and a point \a e onto the plane.
54    * \warning the vector normal is assumed to be normalized.
55    */
56  inline Hyperplane(const VectorType& n, const VectorType& e)
57    : m_coeffs(n.size()+1)
58  {
59    normal() = n;
60    offset() = -e.eigen2_dot(n);
61  }
62
63  /** Constructs a plane from its normal \a n and distance to the origin \a d
64    * such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$.
65    * \warning the vector normal is assumed to be normalized.
66    */
67  inline Hyperplane(const VectorType& n, Scalar d)
68    : m_coeffs(n.size()+1)
69  {
70    normal() = n;
71    offset() = d;
72  }
73
74  /** Constructs a hyperplane passing through the two points. If the dimension of the ambient space
75    * is greater than 2, then there isn't uniqueness, so an arbitrary choice is made.
76    */
77  static inline Hyperplane Through(const VectorType& p0, const VectorType& p1)
78  {
79    Hyperplane result(p0.size());
80    result.normal() = (p1 - p0).unitOrthogonal();
81    result.offset() = -result.normal().eigen2_dot(p0);
82    return result;
83  }
84
85  /** Constructs a hyperplane passing through the three points. The dimension of the ambient space
86    * is required to be exactly 3.
87    */
88  static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2)
89  {
90    EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3)
91    Hyperplane result(p0.size());
92    result.normal() = (p2 - p0).cross(p1 - p0).normalized();
93    result.offset() = -result.normal().eigen2_dot(p0);
94    return result;
95  }
96
97  /** Constructs a hyperplane passing through the parametrized line \a parametrized.
98    * If the dimension of the ambient space is greater than 2, then there isn't uniqueness,
99    * so an arbitrary choice is made.
100    */
101  // FIXME to be consitent with the rest this could be implemented as a static Through function ??
102  explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized)
103  {
104    normal() = parametrized.direction().unitOrthogonal();
105    offset() = -normal().eigen2_dot(parametrized.origin());
106  }
107
108  ~Hyperplane() {}
109
110  /** \returns the dimension in which the plane holds */
111  inline int dim() const { return int(AmbientDimAtCompileTime)==Dynamic ? m_coeffs.size()-1 : int(AmbientDimAtCompileTime); }
112
113  /** normalizes \c *this */
114  void normalize(void)
115  {
116    m_coeffs /= normal().norm();
117  }
118
119  /** \returns the signed distance between the plane \c *this and a point \a p.
120    * \sa absDistance()
121    */
122  inline Scalar signedDistance(const VectorType& p) const { return p.eigen2_dot(normal()) + offset(); }
123
124  /** \returns the absolute distance between the plane \c *this and a point \a p.
125    * \sa signedDistance()
126    */
127  inline Scalar absDistance(const VectorType& p) const { return ei_abs(signedDistance(p)); }
128
129  /** \returns the projection of a point \a p onto the plane \c *this.
130    */
131  inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); }
132
133  /** \returns a constant reference to the unit normal vector of the plane, which corresponds
134    * to the linear part of the implicit equation.
135    */
136  inline const NormalReturnType normal() const { return NormalReturnType(*const_cast<Coefficients*>(&m_coeffs),0,0,dim(),1); }
137
138  /** \returns a non-constant reference to the unit normal vector of the plane, which corresponds
139    * to the linear part of the implicit equation.
140    */
141  inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); }
142
143  /** \returns the distance to the origin, which is also the "constant term" of the implicit equation
144    * \warning the vector normal is assumed to be normalized.
145    */
146  inline const Scalar& offset() const { return m_coeffs.coeff(dim()); }
147
148  /** \returns a non-constant reference to the distance to the origin, which is also the constant part
149    * of the implicit equation */
150  inline Scalar& offset() { return m_coeffs(dim()); }
151
152  /** \returns a constant reference to the coefficients c_i of the plane equation:
153    * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
154    */
155  inline const Coefficients& coeffs() const { return m_coeffs; }
156
157  /** \returns a non-constant reference to the coefficients c_i of the plane equation:
158    * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
159    */
160  inline Coefficients& coeffs() { return m_coeffs; }
161
162  /** \returns the intersection of *this with \a other.
163    *
164    * \warning The ambient space must be a plane, i.e. have dimension 2, so that \c *this and \a other are lines.
165    *
166    * \note If \a other is approximately parallel to *this, this method will return any point on *this.
167    */
168  VectorType intersection(const Hyperplane& other)
169  {
170    EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2)
171    Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0);
172    // since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests
173    // whether the two lines are approximately parallel.
174    if(ei_isMuchSmallerThan(det, Scalar(1)))
175    {   // special case where the two lines are approximately parallel. Pick any point on the first line.
176        if(ei_abs(coeffs().coeff(1))>ei_abs(coeffs().coeff(0)))
177            return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0));
178        else
179            return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0));
180    }
181    else
182    {   // general case
183        Scalar invdet = Scalar(1) / det;
184        return VectorType(invdet*(coeffs().coeff(1)*other.coeffs().coeff(2)-other.coeffs().coeff(1)*coeffs().coeff(2)),
185                          invdet*(other.coeffs().coeff(0)*coeffs().coeff(2)-coeffs().coeff(0)*other.coeffs().coeff(2)));
186    }
187  }
188
189  /** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this.
190    *
191    * \param mat the Dim x Dim transformation matrix
192    * \param traits specifies whether the matrix \a mat represents an Isometry
193    *               or a more generic Affine transformation. The default is Affine.
194    */
195  template<typename XprType>
196  inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine)
197  {
198    if (traits==Affine)
199      normal() = mat.inverse().transpose() * normal();
200    else if (traits==Isometry)
201      normal() = mat * normal();
202    else
203    {
204      ei_assert("invalid traits value in Hyperplane::transform()");
205    }
206    return *this;
207  }
208
209  /** Applies the transformation \a t to \c *this and returns a reference to \c *this.
210    *
211    * \param t the transformation of dimension Dim
212    * \param traits specifies whether the transformation \a t represents an Isometry
213    *               or a more generic Affine transformation. The default is Affine.
214    *               Other kind of transformations are not supported.
215    */
216  inline Hyperplane& transform(const Transform<Scalar,AmbientDimAtCompileTime>& t,
217                                TransformTraits traits = Affine)
218  {
219    transform(t.linear(), traits);
220    offset() -= t.translation().eigen2_dot(normal());
221    return *this;
222  }
223
224  /** \returns \c *this with scalar type casted to \a NewScalarType
225    *
226    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
227    * then this function smartly returns a const reference to \c *this.
228    */
229  template<typename NewScalarType>
230  inline typename internal::cast_return_type<Hyperplane,
231           Hyperplane<NewScalarType,AmbientDimAtCompileTime> >::type cast() const
232  {
233    return typename internal::cast_return_type<Hyperplane,
234                    Hyperplane<NewScalarType,AmbientDimAtCompileTime> >::type(*this);
235  }
236
237  /** Copy constructor with scalar type conversion */
238  template<typename OtherScalarType>
239  inline explicit Hyperplane(const Hyperplane<OtherScalarType,AmbientDimAtCompileTime>& other)
240  { m_coeffs = other.coeffs().template cast<Scalar>(); }
241
242  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
243    * determined by \a prec.
244    *
245    * \sa MatrixBase::isApprox() */
246  bool isApprox(const Hyperplane& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
247  { return m_coeffs.isApprox(other.m_coeffs, prec); }
248
249protected:
250
251  Coefficients m_coeffs;
252};
253
254} // end namespace Eigen
Note: See TracBrowser for help on using the repository browser.