[9112] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
| 27 |
|
---|
| 28 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 29 | internal static class Util {
|
---|
| 30 | public static double ScalarProd(IEnumerable<double> v, IEnumerable<double> u) {
|
---|
| 31 | return v.Zip(u, (vi, ui) => vi * ui).Sum();
|
---|
| 32 | }
|
---|
| 33 |
|
---|
| 34 | public static double SqrDist(IEnumerable<double> x, IEnumerable<double> y) {
|
---|
| 35 | return x.Zip(y, (a, b) => (a - b) * (a - b)).Sum();
|
---|
| 36 | }
|
---|
| 37 |
|
---|
| 38 | public static double SqrDist(double x, double y) {
|
---|
| 39 | double d = x - y;
|
---|
| 40 | return d * d;
|
---|
| 41 | }
|
---|
| 42 |
|
---|
| 43 | public static double SqrDist(double[,] x, int i, int j, double scale = 1.0, IEnumerable<int> columnIndices = null) {
|
---|
| 44 | return SqrDist(x, i, x, j, scale, columnIndices);
|
---|
| 45 | }
|
---|
| 46 |
|
---|
| 47 | public static double SqrDist(double[,] x, int i, double[,] xt, int j, double scale = 1.0, IEnumerable<int> columnIndices = null) {
|
---|
| 48 | double ss = 0.0;
|
---|
| 49 | if (columnIndices == null) columnIndices = Enumerable.Range(0, x.GetLength(1));
|
---|
| 50 | foreach (int columnIndex in columnIndices) {
|
---|
| 51 | double d = x[i, columnIndex] - xt[j, columnIndex];
|
---|
| 52 | ss += d * d;
|
---|
| 53 | }
|
---|
| 54 | return scale * scale * ss;
|
---|
| 55 | }
|
---|
| 56 |
|
---|
| 57 | public static double SqrDist(double[,] x, int i, int j, double[] scale, IEnumerable<int> columnIndices = null) {
|
---|
| 58 | return SqrDist(x, i, x, j, scale, columnIndices);
|
---|
| 59 | }
|
---|
| 60 |
|
---|
| 61 | public static double SqrDist(double[,] x, int i, double[,] xt, int j, double[] scale, IEnumerable<int> columnIndices = null) {
|
---|
| 62 | double ss = 0.0;
|
---|
| 63 | if (columnIndices == null) columnIndices = Enumerable.Range(0, x.GetLength(1));
|
---|
| 64 | int scaleIndex = 0;
|
---|
| 65 | foreach (int columnIndex in columnIndices) {
|
---|
| 66 | double d = x[i, columnIndex] - xt[j, columnIndex];
|
---|
| 67 | ss += d * d * scale[scaleIndex] * scale[scaleIndex];
|
---|
| 68 | scaleIndex++;
|
---|
| 69 | }
|
---|
| 70 | // must be at the end of scale after iterating over columnIndices
|
---|
| 71 | if (scaleIndex != scale.Length)
|
---|
| 72 | throw new ArgumentException("Lengths of scales and covariance functions does not match.");
|
---|
| 73 | return ss;
|
---|
| 74 | }
|
---|
| 75 | public static double ScalarProd(double[,] x, int i, int j, double scale = 1.0, IEnumerable<int> columnIndices = null) {
|
---|
| 76 | return ScalarProd(x, i, x, j, scale, columnIndices);
|
---|
| 77 | }
|
---|
| 78 |
|
---|
| 79 | public static double ScalarProd(double[,] x, int i, double[,] xt, int j, double scale = 1.0, IEnumerable<int> columnIndices = null) {
|
---|
| 80 | double sum = 0.0;
|
---|
| 81 | if (columnIndices == null) columnIndices = Enumerable.Range(0, x.GetLength(1));
|
---|
| 82 | foreach (int columnIndex in columnIndices) {
|
---|
| 83 | sum += x[i, columnIndex] * xt[j, columnIndex];
|
---|
| 84 | }
|
---|
| 85 | return scale * scale * sum;
|
---|
| 86 | }
|
---|
| 87 | public static double ScalarProd(double[,] x, int i, int j, double[] scale, IEnumerable<int> columnIndices = null) {
|
---|
| 88 | return ScalarProd(x, i, x, j, scale, columnIndices);
|
---|
| 89 | }
|
---|
| 90 |
|
---|
| 91 | public static double ScalarProd(double[,] x, int i, double[,] xt, int j, double[] scale, IEnumerable<int> columnIndices = null) {
|
---|
| 92 | double sum = 0.0;
|
---|
| 93 | if (columnIndices == null) columnIndices = Enumerable.Range(0, x.GetLength(1));
|
---|
| 94 | int scaleIndex = 0;
|
---|
| 95 | foreach (int columnIndex in columnIndices) {
|
---|
| 96 | sum += x[i, columnIndex] * scale[scaleIndex] * xt[j, columnIndex] * scale[scaleIndex];
|
---|
| 97 | scaleIndex++;
|
---|
| 98 | }
|
---|
| 99 | // must be at the end of scale after iterating over columnIndices
|
---|
| 100 | if (scaleIndex != scale.Length)
|
---|
| 101 | throw new ArgumentException("Lengths of scales and covariance functions does not match.");
|
---|
| 102 |
|
---|
| 103 | return sum;
|
---|
| 104 | }
|
---|
| 105 |
|
---|
| 106 | public static IEnumerable<double> GetRow(double[,] x, int r) {
|
---|
| 107 | int cols = x.GetLength(1);
|
---|
| 108 | return GetRow(x, r, Enumerable.Range(0, cols));
|
---|
| 109 | }
|
---|
| 110 | public static IEnumerable<double> GetRow(double[,] x, int r, IEnumerable<int> columnIndices) {
|
---|
| 111 | return columnIndices.Select(c => x[r, c]);
|
---|
| 112 | }
|
---|
| 113 | public static IEnumerable<double> GetCol(double[,] x, int c) {
|
---|
| 114 | int rows = x.GetLength(0);
|
---|
| 115 | return Enumerable.Range(0, rows).Select(r => x[r, c]);
|
---|
| 116 | }
|
---|
| 117 | }
|
---|
| 118 | }
|
---|