#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.DataAnalysis;
namespace HeuristicLab.Algorithms.DataAnalysis {
[StorableClass]
public class Scaling : Item {
[Storable]
private Dictionary> scalingParameters = new Dictionary>();
[StorableConstructor]
protected Scaling(bool deserializing) : base(deserializing) { }
protected Scaling(Scaling original, Cloner cloner)
: base(original, cloner) {
foreach (var pair in original.scalingParameters)
scalingParameters.Add(pair.Key, Tuple.Create(pair.Value.Item1, pair.Value.Item2));
}
public Scaling(Dataset ds, IEnumerable variables, IEnumerable rows) {
foreach (var variable in variables) {
var values = ds.GetDoubleValues(variable, rows);
var min = values.Min();
var max = values.Max();
scalingParameters[variable] = Tuple.Create(min, max);
}
}
public override IDeepCloneable Clone(Cloner cloner) {
return new Scaling(this, cloner);
}
public IEnumerable GetScaledValues(Dataset ds, string variable, IEnumerable rows) {
double min = scalingParameters[variable].Item1;
double max = scalingParameters[variable].Item2;
return ds.GetDoubleValues(variable, rows).Select(x => (x - min) / (max - min));
}
}
}