#region License Information /* HeuristicLab * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Problems.DataAnalysis; namespace HeuristicLab.Algorithms.DataAnalysis { [StorableClass] public class Scaling : Item { [Storable] private Dictionary> scalingParameters = new Dictionary>(); [StorableConstructor] protected Scaling(bool deserializing) : base(deserializing) { } protected Scaling(Scaling original, Cloner cloner) : base(original, cloner) { foreach (var pair in original.scalingParameters) scalingParameters.Add(pair.Key, Tuple.Create(pair.Value.Item1, pair.Value.Item2)); } public Scaling(Dataset ds, IEnumerable variables, IEnumerable rows) { foreach (var variable in variables) { var values = ds.GetDoubleValues(variable, rows); var min = values.Min(); var max = values.Max(); scalingParameters[variable] = Tuple.Create(min, max); } } public override IDeepCloneable Clone(Cloner cloner) { return new Scaling(this, cloner); } public IEnumerable GetScaledValues(Dataset ds, string variable, IEnumerable rows) { double min = scalingParameters[variable].Item1; double max = scalingParameters[variable].Item2; return ds.GetDoubleValues(variable, rows).Select(x => (x - min) / (max - min)); } } }