#region License Information /* HeuristicLab * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Text; using HeuristicLab.Core; using System.Diagnostics; using HeuristicLab.Data; using HeuristicLab.Constraints; using HeuristicLab.DataAnalysis; using HeuristicLab.Random; using HeuristicLab.Operators; namespace HeuristicLab.GP.StructureIdentification { public class Variable : FunctionBase { public const string WEIGHT = "Weight"; public const string OFFSET = "SampleOffset"; public const string INDEX = "Variable"; private int minIndex; private int maxIndex; private int minOffset; private int maxOffset; public override string Description { get { return @"Variable reads a value from a dataset, multiplies that value with a given factor and returns the result. The variable 'SampleOffset' can be used to read a value from previous or following rows. The index of the row that is actually read is SampleIndex+SampleOffset)."; } } public Variable() : base() { AddVariableInfo(new VariableInfo(INDEX, "Index of the variable in the dataset representing this feature", typeof(ConstrainedIntData), VariableKind.None)); GetVariableInfo(INDEX).Local = true; AddVariableInfo(new VariableInfo(WEIGHT, "Weight is multiplied to the feature value", typeof(ConstrainedDoubleData), VariableKind.None)); GetVariableInfo(WEIGHT).Local = true; AddVariableInfo(new VariableInfo(OFFSET, "SampleOffset is added to the sample index", typeof(ConstrainedIntData), VariableKind.None)); GetVariableInfo(OFFSET).Local = true; AddVariableInfo(new VariableInfo(INITIALIZATION, "Initialization operator for variables", typeof(CombinedOperator), VariableKind.None)); GetVariableInfo(INITIALIZATION).Local = false; AddVariableInfo(new VariableInfo(MANIPULATION, "Manipulation operator for variables", typeof(CombinedOperator), VariableKind.None)); GetVariableInfo(MANIPULATION).Local = false; DoubleData weight = new DoubleData(); AddVariable(new HeuristicLab.Core.Variable(WEIGHT, weight)); ConstrainedIntData variable = new ConstrainedIntData(); AddVariable(new HeuristicLab.Core.Variable(INDEX, variable)); minIndex = 0; maxIndex = 1000; ConstrainedIntData sampleOffset = new ConstrainedIntData(); AddVariable(new HeuristicLab.Core.Variable(OFFSET, sampleOffset)); SetupInitialization(); SetupManipulation(); // variable can't have suboperators AddConstraint(new NumberOfSubOperatorsConstraint(0, 0)); } private void SetupInitialization() { CombinedOperator combinedOp = new CombinedOperator(); SequentialProcessor seq = new SequentialProcessor(); UniformRandomizer indexRandomizer = new UniformRandomizer(); indexRandomizer.Min = minIndex; indexRandomizer.Max = maxIndex + 1; // uniform randomizer generates numbers in the range [min, max[ indexRandomizer.GetVariableInfo("Value").ActualName = INDEX; indexRandomizer.Name = "Index Randomizer"; NormalRandomizer weightRandomizer = new NormalRandomizer(); weightRandomizer.Mu = 0.0; weightRandomizer.Sigma = 1.0; weightRandomizer.GetVariableInfo("Value").ActualName = WEIGHT; weightRandomizer.Name = "Weight Randomizer"; UniformRandomizer offsetRandomizer = new UniformRandomizer(); offsetRandomizer.Min = minOffset; offsetRandomizer.Max = maxOffset + 1; offsetRandomizer.GetVariableInfo("Value").ActualName = OFFSET; offsetRandomizer.Name = "Offset Randomizer"; combinedOp.OperatorGraph.AddOperator(seq); combinedOp.OperatorGraph.AddOperator(indexRandomizer); combinedOp.OperatorGraph.AddOperator(weightRandomizer); combinedOp.OperatorGraph.AddOperator(offsetRandomizer); combinedOp.OperatorGraph.InitialOperator = seq; seq.AddSubOperator(indexRandomizer); seq.AddSubOperator(weightRandomizer); seq.AddSubOperator(offsetRandomizer); HeuristicLab.Core.IVariable initOp = GetVariable(INITIALIZATION); if(initOp == null) { AddVariable(new HeuristicLab.Core.Variable(INITIALIZATION, combinedOp)); } else { initOp.Value = combinedOp; } } private void SetupManipulation() { // manipulation operator CombinedOperator combinedOp = new CombinedOperator(); SequentialProcessor seq = new SequentialProcessor(); UniformRandomizer indexRandomizer = new UniformRandomizer(); indexRandomizer.Min = minIndex; indexRandomizer.Max = maxIndex + 1; indexRandomizer.GetVariableInfo("Value").ActualName = INDEX; indexRandomizer.Name = "Index Randomizer"; NormalRandomAdder weightRandomAdder = new NormalRandomAdder(); weightRandomAdder.Mu = 0.0; weightRandomAdder.Sigma = 1.0; weightRandomAdder.GetVariableInfo("Value").ActualName = WEIGHT; weightRandomAdder.Name = "Weight Adder"; NormalRandomAdder offsetRandomAdder = new NormalRandomAdder(); offsetRandomAdder.Mu = 0.0; offsetRandomAdder.Sigma = 1.0; offsetRandomAdder.GetVariableInfo("Value").ActualName = OFFSET; offsetRandomAdder.Name = "Offset Adder"; combinedOp.OperatorGraph.AddOperator(seq); combinedOp.OperatorGraph.AddOperator(indexRandomizer); combinedOp.OperatorGraph.AddOperator(weightRandomAdder); combinedOp.OperatorGraph.AddOperator(offsetRandomAdder); combinedOp.OperatorGraph.InitialOperator = seq; seq.AddSubOperator(indexRandomizer); seq.AddSubOperator(weightRandomAdder); seq.AddSubOperator(offsetRandomAdder); HeuristicLab.Core.IVariable manipulationOp = GetVariable(MANIPULATION); if(manipulationOp == null) { AddVariable(new HeuristicLab.Core.Variable(MANIPULATION, combinedOp)); } else { manipulationOp.Value = combinedOp; } } public void SetConstraints(int minInputIndex, int maxInputIndex, int minSampleOffset, int maxSampleOffset) { ConstrainedIntData offset = GetVariableValue(OFFSET, null, false); IntBoundedConstraint offsetConstraint = new IntBoundedConstraint(); this.minOffset = minSampleOffset; this.maxOffset = maxSampleOffset; offsetConstraint.LowerBound = minSampleOffset; offsetConstraint.LowerBoundEnabled = true; offsetConstraint.LowerBoundIncluded = true; offsetConstraint.UpperBound = maxSampleOffset; offsetConstraint.UpperBoundEnabled = true; offsetConstraint.UpperBoundIncluded = true; offset.AddConstraint(offsetConstraint); ConstrainedIntData index = GetVariableValue(INDEX, null, false); IntBoundedConstraint indexConstraint = new IntBoundedConstraint(); minIndex = minInputIndex; maxIndex = maxInputIndex; indexConstraint.LowerBound = minInputIndex; indexConstraint.LowerBoundEnabled = true; indexConstraint.LowerBoundIncluded = true; indexConstraint.UpperBound = maxInputIndex; indexConstraint.UpperBoundEnabled = true; indexConstraint.UpperBoundIncluded = true; index.AddConstraint(indexConstraint); SetupInitialization(); SetupManipulation(); } } }