[5359] | 1 | using System;
|
---|
[5927] | 2 | using System.Collections.Generic;
|
---|
[5359] | 3 | using System.Linq;
|
---|
| 4 | using HeuristicLab.Core;
|
---|
| 5 | using HeuristicLab.Data;
|
---|
| 6 | using HeuristicLab.Optimization;
|
---|
| 7 |
|
---|
| 8 | namespace HeuristicLab.Problems.MetaOptimization {
|
---|
| 9 | public static class MetaOptimizationUtil {
|
---|
| 10 | /// <summary>
|
---|
| 11 | /// Removes those results from the run which are not declared in resultsToKeep
|
---|
| 12 | /// </summary>
|
---|
| 13 | public static void ClearResults(IRun run, IEnumerable<string> resultsToKeep) {
|
---|
| 14 | var resultsToRemove = new List<string>();
|
---|
| 15 | foreach (var result in run.Results) {
|
---|
| 16 | if (!resultsToKeep.Contains(result.Key))
|
---|
| 17 | resultsToRemove.Add(result.Key);
|
---|
| 18 | }
|
---|
| 19 | foreach (var result in resultsToRemove)
|
---|
| 20 | run.Results.Remove(result);
|
---|
| 21 | }
|
---|
| 22 |
|
---|
| 23 | /// <summary>
|
---|
| 24 | /// Removes those parameters from the run which are not declared in parametersToKeep
|
---|
| 25 | /// </summary>
|
---|
| 26 | public static void ClearParameters(IRun run, IEnumerable<string> parametersToKeep) {
|
---|
| 27 | var parametersToRemove = new List<string>();
|
---|
| 28 | foreach (var parameter in run.Parameters) {
|
---|
| 29 | if (!parametersToKeep.Contains(parameter.Key))
|
---|
| 30 | parametersToRemove.Add(parameter.Key);
|
---|
| 31 | }
|
---|
| 32 | foreach (var parameter in parametersToRemove)
|
---|
| 33 | run.Parameters.Remove(parameter);
|
---|
| 34 | }
|
---|
| 35 |
|
---|
[6018] | 36 | public static double Normalize(
|
---|
| 37 | ParameterConfigurationTree parameterConfigurationTree,
|
---|
| 38 | double[] referenceQualityAverages,
|
---|
| 39 | double[] referenceQualityDeviations,
|
---|
| 40 | double[] referenceEvaluatedSolutionAverages,
|
---|
| 41 | double qualityAveragesWeight,
|
---|
| 42 | double qualityDeviationsWeight,
|
---|
| 43 | double evaluatedSolutionsWeight,
|
---|
| 44 | bool maximization) {
|
---|
| 45 |
|
---|
| 46 | double[] qualityAveragesNormalized = new double[referenceQualityAverages.Length];
|
---|
| 47 | double[] qualityDeviationsNormalized = new double[referenceQualityDeviations.Length];
|
---|
| 48 | double[] evaluatedSolutionAveragesNormalized = new double[referenceEvaluatedSolutionAverages.Length];
|
---|
| 49 |
|
---|
| 50 | for (int i = 0; i < referenceQualityAverages.Length; i++) {
|
---|
| 51 | qualityAveragesNormalized[i] = parameterConfigurationTree.AverageQualities[i] / referenceQualityAverages[i];
|
---|
| 52 | qualityDeviationsNormalized[i] = parameterConfigurationTree.QualityStandardDeviations[i] / referenceQualityDeviations[i];
|
---|
| 53 | evaluatedSolutionAveragesNormalized[i] = parameterConfigurationTree.AverageEvaluatedSolutions[i] / referenceEvaluatedSolutionAverages[i];
|
---|
[5359] | 54 | }
|
---|
[6018] | 55 | parameterConfigurationTree.NormalizedQualityAverages = new DoubleArray(qualityAveragesNormalized);
|
---|
| 56 | parameterConfigurationTree.NormalizedQualityDeviations = new DoubleArray(qualityDeviationsNormalized);
|
---|
| 57 | parameterConfigurationTree.NormalizedEvaluatedSolutions = new DoubleArray(evaluatedSolutionAveragesNormalized);
|
---|
| 58 |
|
---|
[6090] | 59 | double qualityAveragesNormalizedValue = qualityAveragesNormalized.Average();
|
---|
| 60 | double qualityDeviationsNormalizedValue = qualityDeviationsNormalized.Average();
|
---|
| 61 | double evaluatedSolutionAveragesNormalizedValue = evaluatedSolutionAveragesNormalized.Average();
|
---|
[6018] | 62 |
|
---|
[6090] | 63 | // deviation and evaluatedSolutions are always minimization problems. so if maximization=true, flip the values around 1.0 (e.g. 1.15 -> 0.85)
|
---|
[6018] | 64 | if (maximization) {
|
---|
| 65 | qualityDeviationsNormalizedValue -= (qualityDeviationsNormalizedValue - 1) * 2;
|
---|
| 66 | evaluatedSolutionAveragesNormalizedValue -= (evaluatedSolutionAveragesNormalizedValue - 1) * 2;
|
---|
| 67 | }
|
---|
| 68 |
|
---|
[6090] | 69 | // apply weights
|
---|
[6018] | 70 | qualityAveragesNormalizedValue *= qualityAveragesWeight;
|
---|
| 71 | qualityDeviationsNormalizedValue *= qualityDeviationsWeight;
|
---|
| 72 | evaluatedSolutionAveragesNormalizedValue *= evaluatedSolutionsWeight;
|
---|
| 73 |
|
---|
[6090] | 74 | double weightSum = qualityAveragesWeight + qualityDeviationsWeight + evaluatedSolutionsWeight;
|
---|
| 75 | parameterConfigurationTree.Quality = new DoubleValue((qualityAveragesNormalizedValue + qualityDeviationsNormalizedValue + evaluatedSolutionAveragesNormalizedValue) / weightSum);
|
---|
| 76 |
|
---|
[6018] | 77 | return parameterConfigurationTree.Quality.Value;
|
---|
[5359] | 78 | }
|
---|
[5927] | 79 |
|
---|
| 80 | /// <summary>
|
---|
| 81 | /// Creates a new instance of algorithmType, sets the given problem and parameterizes it with the given configuration
|
---|
| 82 | /// </summary>
|
---|
| 83 | public static IAlgorithm CreateParameterizedAlgorithmInstance(ParameterConfigurationTree parameterConfigurationTree, Type algorithmType, IProblem problem, bool randomize = false, IRandom random = null) {
|
---|
| 84 | var algorithm = (IAlgorithm)Activator.CreateInstance(algorithmType);
|
---|
| 85 | algorithm.Problem = problem;
|
---|
[6486] | 86 | if (algorithm is EngineAlgorithm) {
|
---|
| 87 | ((EngineAlgorithm)algorithm).Engine = new SequentialEngine.SequentialEngine();
|
---|
| 88 | }
|
---|
[6018] | 89 | if (randomize) parameterConfigurationTree.Randomize(random);
|
---|
[5927] | 90 | parameterConfigurationTree.Parameterize(algorithm);
|
---|
| 91 | return algorithm;
|
---|
| 92 | }
|
---|
[5359] | 93 | }
|
---|
| 94 | }
|
---|