#region License Information /* HeuristicLab * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using System.Drawing; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Core; using HeuristicLab.Optimization; using HeuristicLab.Common; using HeuristicLab.Parameters; using HeuristicLab.Data; using HeuristicLab.PluginInfrastructure; namespace HeuristicLab.Problems.MetaOptimization { [Item("Meta Optimization Problem", "Represents a Meta Optimization Problem.")] [Creatable("Problems")] [StorableClass] public sealed class MetaOptimizationProblem : ParameterizedNamedItem, ISingleObjectiveProblem, IStorableContent { public string Filename { get; set; } public override Image ItemImage { get { return HeuristicLab.Common.Resources.VS2008ImageLibrary.Type; } } #region Parameter Properties public ValueParameter RepetitionsParameter { get { return (ValueParameter)Parameters["Repetitions"]; } } public ValueParameter SolutionCreatorParameter { get { return (ValueParameter)Parameters["SolutionCreator"]; } } IParameter IProblem.SolutionCreatorParameter { get { return SolutionCreatorParameter; } } public ValueParameter EvaluatorParameter { get { return (ValueParameter)Parameters["Evaluator"]; } } IParameter IProblem.EvaluatorParameter { get { return EvaluatorParameter; } } public OptionalValueParameter BestKnownSolutionParameter { get { return (OptionalValueParameter)Parameters["BestKnownSolution"]; } } public ValueParameter MaximizationParameter { get { return (ValueParameter)Parameters["Maximization"]; } } IParameter ISingleObjectiveProblem.MaximizationParameter { get { return MaximizationParameter; } } public OptionalValueParameter BestKnownQualityParameter { get { return (OptionalValueParameter)Parameters["BestKnownQuality"]; } } IParameter ISingleObjectiveProblem.BestKnownQualityParameter { get { return BestKnownQualityParameter; } } public ValueParameter AlgorithmParameter { get { return (ValueParameter)Parameters["Algorithm"]; } } public ValueParameter ParametersToOptimizeParameter { get { return (ValueParameter)Parameters["ParametersToOptimize"]; } } #endregion #region Properties public IntValue Repetitions { get { return RepetitionsParameter.Value; } set { RepetitionsParameter.Value = value; } } public IEnumerable Operators { get { return operators; } } IEvaluator IProblem.Evaluator { get { return EvaluatorParameter.Value; } } public IMetaOptimizationEvaluator Evaluator { get { return EvaluatorParameter.Value; } set { EvaluatorParameter.Value = value; } } ISolutionCreator IProblem.SolutionCreator { get { return SolutionCreatorParameter.Value; } } public IParameterSetCreator SolutionCreator { get { return SolutionCreatorParameter.Value; } } ISingleObjectiveEvaluator ISingleObjectiveProblem.Evaluator { get { return this.Evaluator; } } public DoubleValue BestKnownQuality { get { return BestKnownQualityParameter.Value; } set { BestKnownQualityParameter.Value = value; } } public ParameterSet BestKnownSolution { get { return BestKnownSolutionParameter.Value; } set { BestKnownSolutionParameter.Value = value; } } public IAlgorithm Algorithm { get { return AlgorithmParameter.Value; } set { AlgorithmParameter.Value = value; } } public ParameterConfigurationList ParametersToOptimize { get { return ParametersToOptimizeParameter.Value; } set { ParametersToOptimizeParameter.Value = value; } } private BestQualityAnalyzer BestQualityAnalyzer { get { return operators.OfType().FirstOrDefault(); } } #endregion [Storable] private List operators; [StorableConstructor] private MetaOptimizationProblem(bool deserializing) : base(deserializing) { } public MetaOptimizationProblem() : base() { IParameterSetCreator creator = new RandomParameterSetCreator(); MetaOptimizationEvaluator evaluator = new MetaOptimizationEvaluator(); ParameterConfigurationList parametersToOptimize = new ParameterConfigurationList(); Parameters.Add(new ValueParameter("Maximization", "Set to false as the Traveling Salesman Problem is a minimization problem.", new BoolValue(false))); Parameters.Add(new ValueParameter("Repetitions", "Number of evaluations for one individual.", new IntValue(3))); Parameters.Add(new ValueParameter("SolutionCreator", "The operator which should be used to create new TSP solutions.", creator)); Parameters.Add(new ValueParameter("Evaluator", "The operator which should be used to evaluate TSP solutions.", evaluator)); Parameters.Add(new OptionalValueParameter("BestKnownQuality", "The quality of the best known solution of this TSP instance.")); Parameters.Add(new OptionalValueParameter("BestKnownSolution", "The best known solution of this TSP instance.")); Parameters.Add(new ValueParameter("Algorithm", "The algorithm and problem which's parameters should be optimized.")); Parameters.Add(new ValueParameter("ParametersToOptimize", "List of parameters that should be optimized.", parametersToOptimize)); ParameterizeSolutionCreator(); ParameterizeEvaluator(); InitializeOperators(); AttachEventHandlers(); } #region Cloning public override IDeepCloneable Clone(Cloner cloner) { MetaOptimizationProblem clone = (MetaOptimizationProblem)base.Clone(cloner); clone.operators = operators.Select(x => (IOperator)cloner.Clone(x)).ToList(); // todo clone.AttachEventHandlers(); return clone; } #endregion #region Helpers [StorableHook(HookType.AfterDeserialization)] private void AfterDeserializationHook() { AttachEventHandlers(); } private void AttachEventHandlers() { SolutionCreatorParameter.ValueChanged += new EventHandler(SolutionCreatorParameter_ValueChanged); EvaluatorParameter.ValueChanged += new EventHandler(EvaluatorParameter_ValueChanged); Evaluator.QualityParameter.ActualNameChanged += new EventHandler(Evaluator_QualityParameter_ActualNameChanged); AlgorithmParameter.ValueChanged += new EventHandler(BaseLevelAlgorithmParameter_ValueChanged); } private void InitializeOperators() { operators = new List(); operators.Add(new BestQualityAnalyzer()); ParameterizeAnalyzer(); operators.AddRange(ApplicationManager.Manager.GetInstances().Cast()); ParameterizeOperators(); //UpdateMoveEvaluators(); //InitializeMoveGenerators(); } private void ParameterizeSolutionCreator() { SolutionCreator.ParametersToOptimize = this.ParametersToOptimize; } private void ParameterizeEvaluator() { } private void ParameterizeAnalyzer() { BestQualityAnalyzer.ResultsParameter.ActualName = "Results"; } private void ParameterizeOperators() { } private void AddAlgorithmParameters() { foreach (IParameter parameter in Algorithm.Parameters) { this.ParametersToOptimize.Add(new NumericParameterConfiguration(parameter, "Algorithm"), false); } } private void RemoveAlgorithmParameters() { foreach (IParameter parameter in Algorithm.Parameters) { IParameterConfiguration parameterConfiguration = this.ParametersToOptimize.Single(p => p.Parameter == parameter); if (parameterConfiguration != null) { this.ParametersToOptimize.Remove(parameterConfiguration); } } } private void ClearAlgorithmParameters() { //this.ParametersToOptimize.Clear(); } private void AddProblemParameters() { foreach (IParameter parameter in Algorithm.Problem.Parameters) { this.ParametersToOptimize.Add(new NumericParameterConfiguration(parameter, "Problem"), false); } } private void RemoveProblemParameters() { foreach (IParameter parameter in Algorithm.Problem.Parameters) { IParameterConfiguration parameterConfiguration = this.ParametersToOptimize.Single(p => p.Parameter == parameter); if (parameterConfiguration != null) { this.ParametersToOptimize.Remove(parameterConfiguration); } } } private void ClearProblemParameters() { //this.ParametersToOptimize.Clear(); } #endregion #region Events public event EventHandler SolutionCreatorChanged; private void OnSolutionCreatorChanged() { EventHandler handler = SolutionCreatorChanged; if (handler != null) handler(this, EventArgs.Empty); } public event EventHandler EvaluatorChanged; private void OnEvaluatorChanged() { EventHandler handler = EvaluatorChanged; if (handler != null) handler(this, EventArgs.Empty); } public event EventHandler OperatorsChanged; private void OnOperatorsChanged() { EventHandler handler = OperatorsChanged; if (handler != null) handler(this, EventArgs.Empty); } public event EventHandler Reset; private void OnReset() { EventHandler handler = Reset; if (handler != null) handler(this, EventArgs.Empty); } private void SolutionCreatorParameter_ValueChanged(object sender, EventArgs e) { ParameterizeSolutionCreator(); ParameterizeEvaluator(); ParameterizeAnalyzer(); ParameterizeOperators(); OnSolutionCreatorChanged(); } private void EvaluatorParameter_ValueChanged(object sender, EventArgs e) { Evaluator.QualityParameter.ActualNameChanged += new EventHandler(Evaluator_QualityParameter_ActualNameChanged); ParameterizeEvaluator(); ParameterizeAnalyzer(); OnEvaluatorChanged(); } private void Evaluator_QualityParameter_ActualNameChanged(object sender, EventArgs e) { ParameterizeAnalyzer(); } void BaseLevelAlgorithmParameter_ValueChanged(object sender, EventArgs e) { ClearAlgorithmParameters(); if (Algorithm != null) { Algorithm.ProblemChanged += new EventHandler(BaseLevelAlgorithm_ProblemChanged); AddAlgorithmParameters(); // TODO: When to Detach? } BaseLevelAlgorithm_ProblemChanged(sender, e); } void BaseLevelAlgorithm_ProblemChanged(object sender, EventArgs e) { ClearProblemParameters(); if (Algorithm.Problem != null) { AddProblemParameters(); } } #endregion } }