1 | using System;
|
---|
2 | using System.Collections;
|
---|
3 | using System.Collections.Generic;
|
---|
4 | using System.IO;
|
---|
5 | using System.Linq;
|
---|
6 | using System.Text;
|
---|
7 | using System.Threading;
|
---|
8 | using HeuristicLab.Algorithms.EvolutionStrategy;
|
---|
9 | using HeuristicLab.Algorithms.GeneticAlgorithm;
|
---|
10 | using HeuristicLab.Common;
|
---|
11 | using HeuristicLab.Core;
|
---|
12 | using HeuristicLab.Data;
|
---|
13 | using HeuristicLab.Optimization;
|
---|
14 | using HeuristicLab.PluginInfrastructure;
|
---|
15 | using HeuristicLab.Problems.MetaOptimization;
|
---|
16 | using HeuristicLab.Problems.TestFunctions;
|
---|
17 | using HeuristicLab.Random;
|
---|
18 | using HeuristicLab.Selection;
|
---|
19 | using HeuristicLab.Parameters;
|
---|
20 | using HeuristicLab.Operators;
|
---|
21 | using System.Diagnostics;
|
---|
22 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
23 |
|
---|
24 | namespace HeuristicLab.MetaOptimization.Test {
|
---|
25 | class Program {
|
---|
26 | private static int metaAlgorithmPopulationSize = 50;
|
---|
27 | private static int metaAlgorithmMaxGenerations = 30;
|
---|
28 | private static int metaProblemRepetitions = 5;
|
---|
29 | private static int baseAlgorithmMaxGenerations = 1000;
|
---|
30 |
|
---|
31 | //private static int metaAlgorithmPopulationSize = 10;
|
---|
32 | //private static int metaAlgorithmMaxGenerations = 20;
|
---|
33 | //private static int metaProblemRepetitions = 3;
|
---|
34 | //private static int baseAlgorithmMaxGenerations = 10;
|
---|
35 |
|
---|
36 | static void Main(string[] args) {
|
---|
37 | //TestTableBuilder();
|
---|
38 | //TestShorten();
|
---|
39 |
|
---|
40 | //TestIntSampling();
|
---|
41 | //TestDoubleSampling(); return;
|
---|
42 | //TestTypeDiscovery();
|
---|
43 | //TestOperators();
|
---|
44 | //TestCombinations();
|
---|
45 | //TestCombinations2();
|
---|
46 | //TestCombinations3();
|
---|
47 | //TestEnumeratorCollectionEnumerator();
|
---|
48 | //TestCombinations4();
|
---|
49 | //TestAlgorithmPerformanceIssue();
|
---|
50 |
|
---|
51 | GeneticAlgorithm baseLevelAlgorithm = new GeneticAlgorithm();
|
---|
52 |
|
---|
53 | MetaOptimizationProblem metaOptimizationProblem = new MetaOptimizationProblem();
|
---|
54 | metaOptimizationProblem.Repetitions = new IntValue(metaProblemRepetitions);
|
---|
55 | //GeneticAlgorithm metaLevelAlgorithm = GetMetaGA(metaOptimizationProblem);
|
---|
56 | GeneticAlgorithm metaLevelAlgorithm = GetParallelMetaGA(metaOptimizationProblem);
|
---|
57 | //EvolutionStrategy metaLevelAlgorithm = GetMetaES(metaOptimizationProblem);
|
---|
58 |
|
---|
59 | IValueConfiguration algorithmVc = SetupGAAlgorithm(baseLevelAlgorithm, metaOptimizationProblem);
|
---|
60 |
|
---|
61 | //TestToString(algorithmVc);
|
---|
62 |
|
---|
63 |
|
---|
64 | //Console.WriteLine("Press enter to start");
|
---|
65 | //Console.ReadLine();
|
---|
66 | //TestConfiguration(algorithmVc, baseLevelAlgorithm);
|
---|
67 |
|
---|
68 | //Console.WriteLine("Press enter to start");
|
---|
69 | //Console.ReadLine();
|
---|
70 | TestOptimization(metaLevelAlgorithm);
|
---|
71 |
|
---|
72 | //TestMemoryLeak(metaLevelAlgorithm);
|
---|
73 |
|
---|
74 | Console.ReadLine();
|
---|
75 | }
|
---|
76 |
|
---|
77 | private static void TestAlgorithmPerformanceIssue() {
|
---|
78 | ContentManager.Initialize(new PersistenceContentManager());
|
---|
79 | Queue<TimeSpan> latestExecutionTimes = new Queue<TimeSpan>();
|
---|
80 | int size = 10;
|
---|
81 |
|
---|
82 | GeneticAlgorithm ga = new GeneticAlgorithm();
|
---|
83 | ga.PopulationSize.Value = 3;
|
---|
84 | ga.MaximumGenerations.Value = 1;
|
---|
85 | ga.Engine = new SequentialEngine.SequentialEngine();
|
---|
86 |
|
---|
87 | MetaOptimizationProblem metaOptimizationProblem = new MetaOptimizationProblem();
|
---|
88 | metaOptimizationProblem.Repetitions = new IntValue(metaProblemRepetitions);
|
---|
89 | GeneticAlgorithm metaLevelAlgorithm = GetMetaGA(metaOptimizationProblem);
|
---|
90 | ParameterConfigurationTree algorithmVc = SetupGAAlgorithm(ga, metaOptimizationProblem);
|
---|
91 | Stopwatch sw = new Stopwatch();
|
---|
92 |
|
---|
93 | for (int i = 0; i < 1000; i++) {
|
---|
94 | sw.Start();
|
---|
95 | GeneticAlgorithm clonedGa = (GeneticAlgorithm)ga.Clone();
|
---|
96 | clonedGa.Name = "CLONED GA";
|
---|
97 | algorithmVc.Parameterize(clonedGa);
|
---|
98 | clonedGa.Prepare(true);
|
---|
99 | var executor = new AlgorithmExecutor(clonedGa);
|
---|
100 | executor.StartSync();
|
---|
101 | sw.Stop();
|
---|
102 | latestExecutionTimes.Enqueue(sw.Elapsed);
|
---|
103 | Console.WriteLine("{0}: {1} ({2})", i, sw.Elapsed, latestExecutionTimes.Count > size ? TimeSpan.FromMilliseconds(latestExecutionTimes.Average(t => t.TotalMilliseconds)).ToString() : "-");
|
---|
104 | if (latestExecutionTimes.Count > size) {
|
---|
105 | latestExecutionTimes.Dequeue();
|
---|
106 | }
|
---|
107 | sw.Reset();
|
---|
108 | }
|
---|
109 | }
|
---|
110 |
|
---|
111 | private static void TestTableBuilder() {
|
---|
112 | TableBuilder tb = new TableBuilder("column_1", "col2", "col3");
|
---|
113 | tb.AppendRow("1", "humpi", "0.23124");
|
---|
114 | tb.AppendRow("2", "sf", "0.23124");
|
---|
115 | tb.AppendRow("5", "humpi dampti", "0.224");
|
---|
116 | tb.AppendRow("10", "egon asdf", "0.4");
|
---|
117 | tb.AppendRow("15", "MichaelizcMultiVfds", "0.23124564");
|
---|
118 | Console.WriteLine(tb.ToString());
|
---|
119 | }
|
---|
120 |
|
---|
121 | private static void TestToInfoString(IValueConfiguration algorithmVc) {
|
---|
122 | var random = new MersenneTwister();
|
---|
123 | Console.WriteLine(algorithmVc.ParameterInfoString);
|
---|
124 | algorithmVc.Randomize(random);
|
---|
125 | Console.WriteLine(algorithmVc.ParameterInfoString);
|
---|
126 | algorithmVc.Randomize(random);
|
---|
127 | Console.WriteLine(algorithmVc.ParameterInfoString);
|
---|
128 | algorithmVc.Randomize(random);
|
---|
129 | }
|
---|
130 |
|
---|
131 | private static void TestCombinations() {
|
---|
132 | Console.WriteLine("IntRange 3-18:3");
|
---|
133 | IntValueRange intRange = new IntValueRange(new IntValue(3), new IntValue(18), new IntValue(3));
|
---|
134 | foreach (var val in intRange.GetCombinations()) {
|
---|
135 | Console.WriteLine(val);
|
---|
136 | }
|
---|
137 |
|
---|
138 | Console.WriteLine("DoubleRange 1.0-2.5:0.5");
|
---|
139 | var dblRange = new DoubleValueRange(new DoubleValue(0.7), new DoubleValue(2.8), new DoubleValue(0.5));
|
---|
140 | foreach (var val in dblRange.GetCombinations()) {
|
---|
141 | Console.WriteLine(val);
|
---|
142 | }
|
---|
143 |
|
---|
144 | Console.WriteLine("PercentRange 33%-66%:33%");
|
---|
145 | var pctRange = new PercentValueRange(new PercentValue(0.32), new PercentValue(0.98), new PercentValue(0.33));
|
---|
146 | foreach (var val in pctRange.GetCombinations()) {
|
---|
147 | Console.WriteLine(val);
|
---|
148 | }
|
---|
149 | }
|
---|
150 |
|
---|
151 | private static void TestCombinations3() {
|
---|
152 | Node root = new Node("root");
|
---|
153 | root.ChildNodes.Add(new Node("root.n1"));
|
---|
154 | root.ChildNodes.Add(new Node("root.n2"));
|
---|
155 | Node n3 = new Node("root.n3");
|
---|
156 | n3.ChildNodes.Add(new Node("root.n3.n1"));
|
---|
157 | n3.ChildNodes.Add(new Node("root.n3.n2"));
|
---|
158 | root.ChildNodes.Add(n3);
|
---|
159 |
|
---|
160 | Console.WriteLine(root.ToString());
|
---|
161 | Console.WriteLine("--");
|
---|
162 | int cnt = 0;
|
---|
163 | var enumerator = new NodeEnumerator(root);
|
---|
164 | enumerator.Reset();
|
---|
165 | while (enumerator.MoveNext()) {
|
---|
166 | Console.WriteLine(enumerator.Current.ToString());
|
---|
167 | cnt++;
|
---|
168 | }
|
---|
169 | Console.WriteLine("count: " + cnt);
|
---|
170 | }
|
---|
171 |
|
---|
172 | private static void TestEnumeratorCollectionEnumerator() {
|
---|
173 | IEnumerable<int> list1 = new int[] { 1, 2, 3, 4, 5 };
|
---|
174 | IEnumerable<int> list2 = new int[] { 10, 20, 30 };
|
---|
175 | IEnumerable<int> list3 = new int[] { 300, 400, 500 };
|
---|
176 |
|
---|
177 | var enumerators = new List<IEnumerator>();
|
---|
178 |
|
---|
179 | EnumeratorCollectionEnumerator<int> enu = new EnumeratorCollectionEnumerator<int>();
|
---|
180 | enu.AddEnumerator(list1.GetEnumerator());
|
---|
181 | enu.AddEnumerator(list2.GetEnumerator());
|
---|
182 | enu.AddEnumerator(list3.GetEnumerator());
|
---|
183 | enu.Reset();
|
---|
184 | while (enu.MoveNext()) {
|
---|
185 | Console.WriteLine(enu.Current);
|
---|
186 | }
|
---|
187 | }
|
---|
188 |
|
---|
189 | private static void TestCombinations4() {
|
---|
190 | GeneticAlgorithm ga = new GeneticAlgorithm();
|
---|
191 | ga.Problem = new SingleObjectiveTestFunctionProblem();
|
---|
192 | ga.Engine = new SequentialEngine.SequentialEngine();
|
---|
193 |
|
---|
194 | ParameterConfigurationTree vc = new ParameterConfigurationTree(ga);
|
---|
195 |
|
---|
196 | ConfigurePopulationSize(vc, 20, 100, 20);
|
---|
197 | //ConfigureMutationRate(vc, 0.10, 0.60, 0.10);
|
---|
198 | //ConfigureMutationOperator(vc);
|
---|
199 | ConfigureSelectionOperator(vc, true);
|
---|
200 |
|
---|
201 | int count = 0;
|
---|
202 | IEnumerator enumerator = new ParameterCombinationsEnumerator(vc);
|
---|
203 | enumerator.Reset();
|
---|
204 | while (enumerator.MoveNext()) {
|
---|
205 | var current = (IValueConfiguration)enumerator.Current;
|
---|
206 | count++;
|
---|
207 | Console.WriteLine(current.ParameterInfoString);
|
---|
208 | }
|
---|
209 | Console.WriteLine("You are about to create {0} algorithms.", count);
|
---|
210 |
|
---|
211 | Experiment experiment = vc.GenerateExperiment(ga);
|
---|
212 | //foreach (var opt in experiment.Optimizers) {
|
---|
213 | // Console.WriteLine(opt.Name);
|
---|
214 | //}
|
---|
215 |
|
---|
216 | experiment.Prepare();
|
---|
217 | experiment.Start();
|
---|
218 |
|
---|
219 | while (experiment.ExecutionState != ExecutionState.Stopped) {
|
---|
220 | Thread.Sleep(500);
|
---|
221 | }
|
---|
222 | }
|
---|
223 |
|
---|
224 | private static void TestOperators() {
|
---|
225 | IRandom random = new MersenneTwister();
|
---|
226 |
|
---|
227 | var doubleRange = new DoubleValueRange(new DoubleValue(0), new DoubleValue(100), new DoubleValue(0.1));
|
---|
228 | using (var sw = new StreamWriter("out-DoubleValue.txt")) {
|
---|
229 | for (int i = 0; i < 10000; i++) {
|
---|
230 | var val = new DoubleValue(90);
|
---|
231 | NormalDoubleValueManipulator.ApplyStatic(random, val, doubleRange);
|
---|
232 |
|
---|
233 | sw.WriteLine(val);
|
---|
234 | }
|
---|
235 | }
|
---|
236 |
|
---|
237 | var percentRange = new PercentValueRange(new PercentValue(0), new PercentValue(1), new PercentValue(0.001));
|
---|
238 | using (var sw = new StreamWriter("out-PercentValue.txt")) {
|
---|
239 | for (int i = 0; i < 10000; i++) {
|
---|
240 | var val = new PercentValue(0.5);
|
---|
241 | NormalDoubleValueManipulator.ApplyStatic(random, val, percentRange.AsDoubleValueRange());
|
---|
242 | sw.WriteLine(val);
|
---|
243 | }
|
---|
244 | }
|
---|
245 |
|
---|
246 | var intRange = new IntValueRange(new IntValue(0), new IntValue(100), new IntValue(1));
|
---|
247 | using (var sw = new StreamWriter("out-IntValue.txt")) {
|
---|
248 | for (int i = 0; i < 10000; i++) {
|
---|
249 | var val = new IntValue(50);
|
---|
250 | UniformIntValueManipulator.ApplyStatic(random, val, intRange);
|
---|
251 | sw.WriteLine(val);
|
---|
252 | }
|
---|
253 | }
|
---|
254 |
|
---|
255 | Console.ReadLine();
|
---|
256 | }
|
---|
257 |
|
---|
258 | private static void TestTypeDiscovery() {
|
---|
259 | PluginLoader.pluginAssemblies.Any();
|
---|
260 |
|
---|
261 | var items = ApplicationManager.Manager.GetInstances(typeof(DoubleArray)).ToArray();
|
---|
262 |
|
---|
263 | foreach (var item in items) {
|
---|
264 | Console.WriteLine(item.ToString());
|
---|
265 | }
|
---|
266 | }
|
---|
267 |
|
---|
268 | private static void TestMemoryLeak(GeneticAlgorithm metaLevelAlgorithm) {
|
---|
269 | IValueConfiguration algorithmVc = ((MetaOptimizationProblem)metaLevelAlgorithm.Problem).ParameterConfigurationTree;
|
---|
270 |
|
---|
271 | Console.WriteLine("Starting Memory Test...");
|
---|
272 | Console.ReadLine();
|
---|
273 |
|
---|
274 | var clones = new List<object>();
|
---|
275 | for (int i = 0; i < 1000; i++) {
|
---|
276 | var clone = algorithmVc.Clone();
|
---|
277 | clones.Add(clone);
|
---|
278 | }
|
---|
279 |
|
---|
280 | Console.WriteLine("Finished. Now GC...");
|
---|
281 | Console.ReadLine();
|
---|
282 |
|
---|
283 | GC.Collect();
|
---|
284 |
|
---|
285 | Console.WriteLine("Finished!");
|
---|
286 | Console.ReadLine();
|
---|
287 | }
|
---|
288 |
|
---|
289 | private static GeneticAlgorithm GetMetaGA(MetaOptimizationProblem metaOptimizationProblem) {
|
---|
290 | GeneticAlgorithm metaLevelAlgorithm = new GeneticAlgorithm();
|
---|
291 | metaLevelAlgorithm.PopulationSize.Value = metaAlgorithmPopulationSize;
|
---|
292 | metaLevelAlgorithm.MaximumGenerations.Value = metaAlgorithmMaxGenerations;
|
---|
293 |
|
---|
294 | metaLevelAlgorithm.Problem = metaOptimizationProblem;
|
---|
295 | metaLevelAlgorithm.Engine = new SequentialEngine.SequentialEngine();
|
---|
296 |
|
---|
297 | metaLevelAlgorithm.Mutator = ((OptionalConstrainedValueParameter<IManipulator>)((IAlgorithm)metaLevelAlgorithm).Parameters["Mutator"]).ValidValues.Last();
|
---|
298 |
|
---|
299 | metaLevelAlgorithm.MutationProbability.Value = 0.15;
|
---|
300 |
|
---|
301 | return metaLevelAlgorithm;
|
---|
302 | }
|
---|
303 |
|
---|
304 | private static GeneticAlgorithm GetParallelMetaGA(MetaOptimizationProblem metaOptimizationProblem) {
|
---|
305 | GeneticAlgorithm metaLevelAlgorithm = GetMetaGA(metaOptimizationProblem);
|
---|
306 |
|
---|
307 | UniformSubScopesProcessor uniformSubScopesProcessor =
|
---|
308 | (HeuristicLab.Operators.UniformSubScopesProcessor)
|
---|
309 | ((HeuristicLab.Operators.AlgorithmOperator)metaLevelAlgorithm.OperatorGraph.Operators.ElementAt(2)).OperatorGraph.Operators.ElementAt(8);
|
---|
310 | uniformSubScopesProcessor.Parallel.Value = true;
|
---|
311 |
|
---|
312 | metaLevelAlgorithm.Engine = new ParallelEngine.ParallelEngine();
|
---|
313 |
|
---|
314 | return metaLevelAlgorithm;
|
---|
315 | }
|
---|
316 |
|
---|
317 | private static EvolutionStrategy GetMetaES(MetaOptimizationProblem metaOptimizationProblem) {
|
---|
318 | EvolutionStrategy metaLevelAlgorithm = new EvolutionStrategy();
|
---|
319 | metaLevelAlgorithm.PopulationSize.Value = metaAlgorithmPopulationSize;
|
---|
320 | metaLevelAlgorithm.MaximumGenerations.Value = metaAlgorithmMaxGenerations;
|
---|
321 |
|
---|
322 | metaLevelAlgorithm.Problem = metaOptimizationProblem;
|
---|
323 | metaLevelAlgorithm.Engine = new SequentialEngine.SequentialEngine();
|
---|
324 |
|
---|
325 | metaLevelAlgorithm.Mutator = ((OptionalConstrainedValueParameter<IManipulator>)((IAlgorithm)metaLevelAlgorithm).Parameters["Mutator"]).ValidValues.Last();
|
---|
326 |
|
---|
327 | return metaLevelAlgorithm;
|
---|
328 | }
|
---|
329 |
|
---|
330 | private static ParameterConfigurationTree SetupGAAlgorithm(GeneticAlgorithm baseLevelAlgorithm, MetaOptimizationProblem metaOptimizationProblem) {
|
---|
331 | baseLevelAlgorithm.Problem = new HeuristicLab.Problems.TestFunctions.SingleObjectiveTestFunctionProblem();
|
---|
332 | baseLevelAlgorithm.MaximumGenerations.Value = baseAlgorithmMaxGenerations;
|
---|
333 |
|
---|
334 | metaOptimizationProblem.Algorithm = baseLevelAlgorithm;
|
---|
335 | ParameterConfigurationTree algorithmVc = metaOptimizationProblem.ParameterConfigurationTree;
|
---|
336 |
|
---|
337 | metaOptimizationProblem.Problems.Add(new HeuristicLab.Problems.TestFunctions.SingleObjectiveTestFunctionProblem() {
|
---|
338 | Evaluator = new GriewankEvaluator(),
|
---|
339 | ProblemSize = new IntValue(500)
|
---|
340 | });
|
---|
341 | //metaOptimizationProblem.Problems.Add(new HeuristicLab.Problems.TestFunctions.SingleObjectiveTestFunctionProblem() {
|
---|
342 | // Evaluator = new GriewankEvaluator(),
|
---|
343 | // ProblemSize = new IntValue(1000)
|
---|
344 | //});
|
---|
345 |
|
---|
346 | ConfigurePopulationSize(algorithmVc, 0, 100, 1);
|
---|
347 | ConfigureMutationRate(algorithmVc, 0.0, 1.0, 0.01);
|
---|
348 | ConfigureMutationOperator(algorithmVc);
|
---|
349 | ConfigureElites(algorithmVc, 0, 10, 1);
|
---|
350 | ConfigureSelectionOperator(algorithmVc, true);
|
---|
351 | return algorithmVc;
|
---|
352 | }
|
---|
353 |
|
---|
354 | private static void TestConfiguration(IValueConfiguration algorithmVc, GeneticAlgorithm baseLevelAlgorithm) {
|
---|
355 | IRandom rand = new FastRandom(0);
|
---|
356 | // set random values
|
---|
357 | for (int i = 0; i < 10; i++) {
|
---|
358 | IValueConfiguration clonedVc = (IValueConfiguration)algorithmVc.Clone();
|
---|
359 | GeneticAlgorithm newAlg = (GeneticAlgorithm)baseLevelAlgorithm.Clone();
|
---|
360 | clonedVc.Randomize(rand);
|
---|
361 | clonedVc.Parameterize(newAlg);
|
---|
362 | Console.WriteLine(string.Format("PopSize: original: {0}, randomized: {1}", baseLevelAlgorithm.PopulationSize, newAlg.PopulationSize));
|
---|
363 | Console.WriteLine(string.Format("MutRate: original: {0}, randomized: {1}", baseLevelAlgorithm.MutationProbability, newAlg.MutationProbability));
|
---|
364 | Console.WriteLine(string.Format("MutOp: original: {0}, randomized: {1}", baseLevelAlgorithm.Mutator, newAlg.Mutator));
|
---|
365 | Console.WriteLine(string.Format("SelOp: original: {0}, randomized: {1}", baseLevelAlgorithm.Selector, newAlg.Selector));
|
---|
366 | //Console.WriteLine(string.Format("GrSi: original: {0}, randomized: {1}", "?", ((TournamentSelector)newAlg.Selector).GroupSizeParameter.Value));
|
---|
367 | Console.WriteLine("---");
|
---|
368 | }
|
---|
369 |
|
---|
370 | Console.WriteLine("=======================");
|
---|
371 | algorithmVc.Randomize(rand);
|
---|
372 | algorithmVc.Parameterize(baseLevelAlgorithm);
|
---|
373 | // mutate
|
---|
374 | for (int i = 0; i < 10; i++) {
|
---|
375 | IValueConfiguration clonedVc = (IValueConfiguration)algorithmVc.Clone();
|
---|
376 | GeneticAlgorithm newAlg = (GeneticAlgorithm)baseLevelAlgorithm.Clone();
|
---|
377 | //clonedVc.Mutate(rand);
|
---|
378 |
|
---|
379 | //.Apply(rand, clonedVc); todo
|
---|
380 | clonedVc.Parameterize(newAlg);
|
---|
381 | Console.WriteLine(string.Format("PopSize: original: {0}, mutated: {1}", baseLevelAlgorithm.PopulationSize, newAlg.PopulationSize));
|
---|
382 | Console.WriteLine(string.Format("MutRate: original: {0}, mutated: {1}", baseLevelAlgorithm.MutationProbability, newAlg.MutationProbability));
|
---|
383 | Console.WriteLine(string.Format("MutOp: original: {0}, mutated: {1}", baseLevelAlgorithm.Mutator, newAlg.Mutator));
|
---|
384 | Console.WriteLine(string.Format("SelOp: original: {0}, mutated: {1}", baseLevelAlgorithm.Selector, newAlg.Selector));
|
---|
385 | //Console.WriteLine(string.Format("GrSi: original: {0}, mutated: {1}", ((TournamentSelector)baseLevelAlgorithm.Selector).GroupSizeParameter.Value, ((TournamentSelector)newAlg.Selector).GroupSizeParameter.Value));
|
---|
386 | Console.WriteLine("---");
|
---|
387 | }
|
---|
388 |
|
---|
389 | Console.WriteLine("=======================");
|
---|
390 | // cross
|
---|
391 | for (int i = 0; i < 10; i++) {
|
---|
392 | IValueConfiguration clonedVc1 = (IValueConfiguration)algorithmVc.Clone();
|
---|
393 | IValueConfiguration clonedVc2 = (IValueConfiguration)algorithmVc.Clone();
|
---|
394 |
|
---|
395 | GeneticAlgorithm first = (GeneticAlgorithm)baseLevelAlgorithm.Clone();
|
---|
396 | GeneticAlgorithm second = (GeneticAlgorithm)baseLevelAlgorithm.Clone();
|
---|
397 |
|
---|
398 | clonedVc1.Randomize(rand);
|
---|
399 | clonedVc1.Parameterize(first);
|
---|
400 |
|
---|
401 | clonedVc2.Randomize(rand);
|
---|
402 | clonedVc2.Parameterize(second);
|
---|
403 |
|
---|
404 | var popSizeBefore = first.PopulationSize.Value;
|
---|
405 | var mutRateBefore = first.MutationProbability.Value;
|
---|
406 | var mutOpBefore = first.Mutator;
|
---|
407 | var selOpBefore = first.Selector;
|
---|
408 | //var groupSizeBefore = ((TournamentSelector)first.Selector).GroupSizeParameter.Value.Value;
|
---|
409 |
|
---|
410 | //clonedVc1.Cross(clonedVc2, rand); todo
|
---|
411 | clonedVc1.Parameterize(first);
|
---|
412 |
|
---|
413 | Console.WriteLine(string.Format("PopSize: first: {0}, second: {1}, crossed: {2}", popSizeBefore, second.PopulationSize, first.PopulationSize));
|
---|
414 | Console.WriteLine(string.Format("MutRate: first: {0}, second: {1}, crossed: {2}", mutRateBefore, second.MutationProbability, first.MutationProbability));
|
---|
415 | Console.WriteLine(string.Format("MutOp: first: {0}, second: {1}, crossed: {2}", mutOpBefore, second.Mutator, first.Mutator));
|
---|
416 | Console.WriteLine(string.Format("SelOp: first: {0}, second: {1}, crossed: {2}", selOpBefore, second.Selector, first.Selector));
|
---|
417 | //Console.WriteLine(string.Format("GrSi: first: {0}, second: {1}, crossed: {2}", groupSizeBefore, ((TournamentSelector)second.Selector).GroupSizeParameter.Value, ((TournamentSelector)first.Selector).GroupSizeParameter.Value));
|
---|
418 | Console.WriteLine("---");
|
---|
419 | }
|
---|
420 | Console.WriteLine("=======================");
|
---|
421 | }
|
---|
422 |
|
---|
423 | private static void ConfigureMutationOperator(IValueConfiguration algorithmVc) {
|
---|
424 | var mutationOperator = algorithmVc.ParameterConfigurations.Where(x => x.Name == "Mutator").SingleOrDefault();
|
---|
425 | mutationOperator.Optimize = true;
|
---|
426 |
|
---|
427 | // uncheck multiMutator to avoid Michalewicz issue
|
---|
428 | var multiMutator = mutationOperator.ValueConfigurations.Where(x => x.ActualValue.Value != null && x.ActualValue.Value.ItemName.StartsWith("Multi")).SingleOrDefault();
|
---|
429 | if (multiMutator != null) {
|
---|
430 | mutationOperator.ValueConfigurations.SetItemCheckedState(multiMutator, false);
|
---|
431 | }
|
---|
432 | }
|
---|
433 |
|
---|
434 | private static void ConfigureSelectionOperator(IValueConfiguration algorithmVc, bool configureTournamenSize) {
|
---|
435 | var selectionOperatorPc = algorithmVc.ParameterConfigurations.Where(x => x.Name == "Selector").SingleOrDefault();
|
---|
436 | selectionOperatorPc.Optimize = true;
|
---|
437 |
|
---|
438 | foreach (var vc in selectionOperatorPc.ValueConfigurations) {
|
---|
439 | if (vc.ActualValue.ValueDataType == typeof(TournamentSelector)) {
|
---|
440 | selectionOperatorPc.ValueConfigurations.SetItemCheckedState(vc, true);
|
---|
441 | if (configureTournamenSize) {
|
---|
442 | vc.Optimize = true;
|
---|
443 | ConfigureTournamentGroupSize(vc);
|
---|
444 | }
|
---|
445 | } else if (vc.ActualValue.ValueDataType == typeof(RandomSelector)) {
|
---|
446 | selectionOperatorPc.ValueConfigurations.SetItemCheckedState(vc, true);
|
---|
447 | } else {
|
---|
448 | selectionOperatorPc.ValueConfigurations.SetItemCheckedState(vc, true);
|
---|
449 | }
|
---|
450 | }
|
---|
451 | }
|
---|
452 |
|
---|
453 | private static void ConfigureTournamentGroupSize(IValueConfiguration tournamentVc) {
|
---|
454 | var groupSizePc = tournamentVc.ParameterConfigurations.Where(x => x.ParameterName == "GroupSize").SingleOrDefault();
|
---|
455 | groupSizePc.Optimize = true;
|
---|
456 |
|
---|
457 | groupSizePc.ValueConfigurations.First().Optimize = true;
|
---|
458 | groupSizePc.ValueConfigurations.First().RangeConstraint.LowerBound = new IntValue(0);
|
---|
459 | groupSizePc.ValueConfigurations.First().RangeConstraint.UpperBound = new IntValue(10);
|
---|
460 | groupSizePc.ValueConfigurations.First().RangeConstraint.StepSize = new IntValue(1);
|
---|
461 | }
|
---|
462 |
|
---|
463 | private static void ConfigurePopulationSize(IValueConfiguration algorithmVc, int lower, int upper, int stepsize) {
|
---|
464 | var populationSizePc = algorithmVc.ParameterConfigurations.Where(x => x.Name == "PopulationSize").SingleOrDefault();
|
---|
465 | populationSizePc.Optimize = true;
|
---|
466 | var populationSizeVc = populationSizePc.ValueConfigurations.First();
|
---|
467 | populationSizeVc.Optimize = true;
|
---|
468 | populationSizeVc.RangeConstraint.LowerBound = new IntValue(lower);
|
---|
469 | populationSizeVc.RangeConstraint.UpperBound = new IntValue(upper);
|
---|
470 | populationSizeVc.RangeConstraint.StepSize = new IntValue(stepsize);
|
---|
471 | }
|
---|
472 |
|
---|
473 | private static void ConfigureMutationRate(IValueConfiguration algorithmVc, double lower, double upper, double stepsize) {
|
---|
474 | var mutationRatePc = algorithmVc.ParameterConfigurations.Where(x => x.Name == "MutationProbability").SingleOrDefault();
|
---|
475 | mutationRatePc.Optimize = true;
|
---|
476 | var mutationRateVc = mutationRatePc.ValueConfigurations.First();
|
---|
477 | mutationRateVc.Optimize = true;
|
---|
478 | mutationRateVc.RangeConstraint.LowerBound = new PercentValue(lower);
|
---|
479 | mutationRateVc.RangeConstraint.UpperBound = new PercentValue(upper);
|
---|
480 | mutationRateVc.RangeConstraint.StepSize = new PercentValue(stepsize);
|
---|
481 | }
|
---|
482 |
|
---|
483 | private static void ConfigureElites(IValueConfiguration algorithmVc, int from, int to, int stepSize) {
|
---|
484 | var elitesPc = algorithmVc.ParameterConfigurations.Where(x => x.Name == "Elites").SingleOrDefault();
|
---|
485 | elitesPc.Optimize = true;
|
---|
486 | var elitesVc = elitesPc.ValueConfigurations.First();
|
---|
487 | elitesVc.Optimize = true;
|
---|
488 | elitesVc.RangeConstraint.LowerBound = new IntValue(from);
|
---|
489 | elitesVc.RangeConstraint.UpperBound = new IntValue(to);
|
---|
490 | elitesVc.RangeConstraint.StepSize = new IntValue(stepSize);
|
---|
491 | }
|
---|
492 |
|
---|
493 | private static void TestOptimization(EngineAlgorithm metaLevelAlgorithm) {
|
---|
494 | ContentManager.Initialize(new PersistenceContentManager());
|
---|
495 | string path = Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "Results");
|
---|
496 | if (!Directory.Exists(path))
|
---|
497 | Directory.CreateDirectory(path);
|
---|
498 | string id = DateTime.Now.ToString("yyyy.MM.dd - HH;mm;ss,ffff");
|
---|
499 | string resultPath = Path.Combine(path, string.Format("{0} - Result.hl", id));
|
---|
500 | string outputPath = Path.Combine(path, string.Format("{0} - Console.txt", id));
|
---|
501 |
|
---|
502 | using (var sw = new StreamWriter(outputPath)) {
|
---|
503 | sw.AutoFlush = true;
|
---|
504 |
|
---|
505 | StringBuilder sb1 = new StringBuilder();
|
---|
506 | sb1.AppendFormat("Meta.PopulationSize: {0}\n", metaAlgorithmPopulationSize);
|
---|
507 | sb1.AppendFormat("Meta.MaxGenerations: {0}\n", metaAlgorithmMaxGenerations);
|
---|
508 | sb1.AppendFormat("Meta.Repetitions : {0}\n", metaProblemRepetitions);
|
---|
509 | sb1.AppendFormat("Meta.MutProb : {0}\n", ((GeneticAlgorithm)metaLevelAlgorithm).MutationProbability.Value);
|
---|
510 | sb1.AppendFormat("Base.MaxGenerations: {0}\n", baseAlgorithmMaxGenerations);
|
---|
511 | sb1.AppendLine("Problems:");
|
---|
512 | foreach (var prob in ((MetaOptimizationProblem)metaLevelAlgorithm.Problem).Problems) {
|
---|
513 | sb1.Append(prob.Name);
|
---|
514 | var sotf = prob as SingleObjectiveTestFunctionProblem;
|
---|
515 | if (sotf != null) {
|
---|
516 | sb1.AppendFormat(" {0}", sotf.ProblemSize.Value);
|
---|
517 | }
|
---|
518 | sb1.AppendLine();
|
---|
519 | }
|
---|
520 | sw.WriteLine(sb1.ToString());
|
---|
521 | Console.WriteLine(sb1.ToString());
|
---|
522 | metaLevelAlgorithm.Stopped += new EventHandler(metaLevelAlgorithm_Stopped);
|
---|
523 | metaLevelAlgorithm.Paused += new EventHandler(metaLevelAlgorithm_Paused);
|
---|
524 | metaLevelAlgorithm.ExceptionOccurred += new EventHandler<EventArgs<Exception>>(metaLevelAlgorithm_ExceptionOccurred);
|
---|
525 |
|
---|
526 | metaLevelAlgorithm.Start();
|
---|
527 | int i = 0;
|
---|
528 | int currentGeneration = -1;
|
---|
529 | do {
|
---|
530 | Thread.Sleep(500);
|
---|
531 | if (metaLevelAlgorithm.Results.ContainsKey("Generations") && ((IntValue)metaLevelAlgorithm.Results["Generations"].Value).Value != currentGeneration) {
|
---|
532 | while (metaLevelAlgorithm.Results.Count < 3) Thread.Sleep(100);
|
---|
533 | StringBuilder sb = new StringBuilder();
|
---|
534 | sb.AppendLine(DateTime.Now.ToLongTimeString());
|
---|
535 | sb.AppendLine("=================================");
|
---|
536 |
|
---|
537 | sb.AppendLine(metaLevelAlgorithm.ExecutionState.ToString());
|
---|
538 | var rsClone = (ResultCollection)metaLevelAlgorithm.Results.Clone();
|
---|
539 | foreach (var result in rsClone) {
|
---|
540 | sb.AppendLine(result.ToString());
|
---|
541 | if (result.Name == "Population") {
|
---|
542 | RunCollection rc = (RunCollection)result.Value;
|
---|
543 | var orderedRuns = rc.OrderBy(x => x.Results["RunsAverageQuality"]);
|
---|
544 |
|
---|
545 | TableBuilder tb = new TableBuilder("AvgQual", "AvgET", "PoSi", "MutRa", "Eli", "SelOp", "MutOp", "NrSelSubScopes");
|
---|
546 | foreach (IRun run in orderedRuns) {
|
---|
547 | string selector;
|
---|
548 | if (run.Parameters["Selector"] is TournamentSelector) {
|
---|
549 | selector = string.Format("{0} ({1})", run.Parameters["Selector"].ToString(), ((TournamentSelector)run.Parameters["Selector"]).GroupSizeParameter.Value.ToString());
|
---|
550 | } else {
|
---|
551 | selector = string.Format("{0}", run.Parameters["Selector"].ToString());
|
---|
552 | }
|
---|
553 |
|
---|
554 | tb.AppendRow(
|
---|
555 | ((DoubleValue)run.Results["RunsAverageQuality"]).Value.ToString("#0.00"),
|
---|
556 | run.Results["RunsAverageExecutionTime"].ToString(),
|
---|
557 | ((IntValue)run.Parameters["PopulationSize"]).Value.ToString(),
|
---|
558 | ((DoubleValue)run.Parameters["MutationProbability"]).Value.ToString("0.00"),
|
---|
559 | ((IntValue)run.Parameters["Elites"]).Value.ToString(),
|
---|
560 | Shorten(selector, 20),
|
---|
561 | Shorten(run.Parameters.ContainsKey("Mutator") ? run.Parameters["Mutator"].ToString() : "null", 40),
|
---|
562 | ((ISelector)run.Parameters["Selector"]).NumberOfSelectedSubScopesParameter.Value.ToString());
|
---|
563 | }
|
---|
564 | sb.AppendLine(tb.ToString());
|
---|
565 | }
|
---|
566 | } // foreach
|
---|
567 | //Console.Clear();
|
---|
568 | Console.WriteLine(sb.ToString());
|
---|
569 | sw.WriteLine(sb.ToString());
|
---|
570 | currentGeneration = ((IntValue)metaLevelAlgorithm.Results["Generations"].Value).Value;
|
---|
571 | } // if
|
---|
572 | //if (i % 30 == 0) GC.Collect();
|
---|
573 | i++;
|
---|
574 | } while (metaLevelAlgorithm.ExecutionState != ExecutionState.Stopped);
|
---|
575 | }
|
---|
576 |
|
---|
577 | Console.WriteLine();
|
---|
578 | Console.WriteLine("Storing...");
|
---|
579 |
|
---|
580 | ContentManager.Save((IStorableContent)metaLevelAlgorithm, resultPath, true);
|
---|
581 | Console.WriteLine("Finished");
|
---|
582 | }
|
---|
583 |
|
---|
584 | private static void metaLevelAlgorithm_ExceptionOccurred(object sender, EventArgs<Exception> e) {
|
---|
585 | Console.WriteLine("metaLevelAlgorithm_ExceptionOccurred");
|
---|
586 | }
|
---|
587 |
|
---|
588 | private static void metaLevelAlgorithm_Paused(object sender, EventArgs e) {
|
---|
589 | Console.WriteLine("metaLevelAlgorithm_Paused");
|
---|
590 | }
|
---|
591 |
|
---|
592 | private static void metaLevelAlgorithm_Stopped(object sender, EventArgs e) {
|
---|
593 | Console.WriteLine("metaLevelAlgorithm_Stopped");
|
---|
594 | }
|
---|
595 |
|
---|
596 | private static void TestShorten() {
|
---|
597 | int n = 8;
|
---|
598 | Console.WriteLine(Shorten("1", n));
|
---|
599 | Console.WriteLine(Shorten("12", n));
|
---|
600 | Console.WriteLine(Shorten("123", n));
|
---|
601 | Console.WriteLine(Shorten("1234", n));
|
---|
602 | Console.WriteLine(Shorten("12345", n));
|
---|
603 | Console.WriteLine(Shorten("123456", n));
|
---|
604 | Console.WriteLine(Shorten("1234567", n));
|
---|
605 | Console.WriteLine(Shorten("12345678", n));
|
---|
606 | Console.WriteLine(Shorten("123456789", n));
|
---|
607 | Console.WriteLine(Shorten("1234567890", n));
|
---|
608 | Console.WriteLine(Shorten("12345678901", n));
|
---|
609 | }
|
---|
610 |
|
---|
611 | private static string Shorten(string s, int n) {
|
---|
612 | string placeholder = "..";
|
---|
613 | if (s.Length <= n) return s;
|
---|
614 | int len = n / 2 - placeholder.Length / 2;
|
---|
615 | string start = s.Substring(0, len);
|
---|
616 | string end = s.Substring(s.Length - len, len);
|
---|
617 | return start + placeholder + end;
|
---|
618 | }
|
---|
619 |
|
---|
620 | private static void TestIntSampling() {
|
---|
621 | System.Random rand = new System.Random();
|
---|
622 | int lower = 10;
|
---|
623 | int upper = 20;
|
---|
624 | int stepsize = 1;
|
---|
625 | for (int i = 0; i < 100; i++) {
|
---|
626 | int val;
|
---|
627 | do {
|
---|
628 | val = rand.Next(lower / stepsize, upper / stepsize + 1) * stepsize;
|
---|
629 | } while (val < lower || val > upper);
|
---|
630 | Console.WriteLine(val);
|
---|
631 | }
|
---|
632 | }
|
---|
633 |
|
---|
634 | private static void TestDoubleSampling() {
|
---|
635 | System.Random rand = new System.Random();
|
---|
636 | double lower = 2;
|
---|
637 | double upper = 3;
|
---|
638 | double stepsize = 0.6;
|
---|
639 | for (int i = 0; i < 100; i++) {
|
---|
640 | double val;
|
---|
641 | do {
|
---|
642 | val = Math.Round((rand.NextDouble() * (upper - lower) + lower) / stepsize, 0) * stepsize;
|
---|
643 | } while (val < lower || val > upper);
|
---|
644 | Console.WriteLine(val);
|
---|
645 | }
|
---|
646 | }
|
---|
647 |
|
---|
648 | private static IEnumerable<IItem> GetValidValues(IValueParameter valueParameter) {
|
---|
649 | return ApplicationManager.Manager.GetInstances(valueParameter.DataType).Select(x => (IItem)x).OrderBy(x => x.ItemName);
|
---|
650 | }
|
---|
651 | }
|
---|
652 |
|
---|
653 | public class Node {
|
---|
654 | public string Name { get; set; }
|
---|
655 | public int ActualValue { get; set; }
|
---|
656 | public int[] PossibleValues { get; set; }
|
---|
657 | public List<Node> ChildNodes { get; set; }
|
---|
658 |
|
---|
659 | public Node(string name) {
|
---|
660 | this.Name = name;
|
---|
661 | PossibleValues = new int[] { 1, 2, 3 };
|
---|
662 | ChildNodes = new List<Node>();
|
---|
663 | }
|
---|
664 |
|
---|
665 | public void Init() {
|
---|
666 | this.ActualValue = PossibleValues.First();
|
---|
667 | foreach (var child in ChildNodes) {
|
---|
668 | child.Init();
|
---|
669 | }
|
---|
670 | }
|
---|
671 |
|
---|
672 | public override string ToString() {
|
---|
673 | StringBuilder sb = new StringBuilder();
|
---|
674 | sb.Append(string.Format("{0}:{1}", this.Name, this.ActualValue));
|
---|
675 | if (this.ChildNodes.Count() > 0) {
|
---|
676 | sb.Append(" (");
|
---|
677 | var lst = new List<string>();
|
---|
678 | foreach (Node child in ChildNodes) {
|
---|
679 | lst.Add(child.ToString());
|
---|
680 | }
|
---|
681 | sb.Append(string.Join(", ", lst.ToArray()));
|
---|
682 | sb.Append(")");
|
---|
683 | }
|
---|
684 |
|
---|
685 | return sb.ToString();
|
---|
686 | }
|
---|
687 | }
|
---|
688 |
|
---|
689 | public class NodeEnumerator : IEnumerator<Node> {
|
---|
690 | private Node node;
|
---|
691 | private List<IEnumerator> enumerators;
|
---|
692 |
|
---|
693 | public NodeEnumerator(Node node) {
|
---|
694 | this.node = node;
|
---|
695 | this.enumerators = new List<IEnumerator>();
|
---|
696 | }
|
---|
697 |
|
---|
698 | public Node Current {
|
---|
699 | get { return node; }
|
---|
700 | }
|
---|
701 | object IEnumerator.Current {
|
---|
702 | get { return Current; }
|
---|
703 | }
|
---|
704 |
|
---|
705 | public void Dispose() { }
|
---|
706 |
|
---|
707 | public bool MoveNext() {
|
---|
708 | int i = 0;
|
---|
709 | bool ok = false;
|
---|
710 | while (!ok && i < enumerators.Count) {
|
---|
711 | if (enumerators[i].MoveNext()) {
|
---|
712 | ok = true;
|
---|
713 | } else {
|
---|
714 | i++;
|
---|
715 | }
|
---|
716 | }
|
---|
717 |
|
---|
718 | if (ok) {
|
---|
719 | for (int k = i - 1; k >= 0; k--) {
|
---|
720 | enumerators[k].Reset();
|
---|
721 | enumerators[k].MoveNext();
|
---|
722 | }
|
---|
723 | } else {
|
---|
724 | return false;
|
---|
725 | }
|
---|
726 |
|
---|
727 | node.ActualValue = (int)enumerators[0].Current;
|
---|
728 | return true;
|
---|
729 | }
|
---|
730 |
|
---|
731 | public void Reset() {
|
---|
732 | enumerators.Clear();
|
---|
733 | enumerators.Add(node.PossibleValues.GetEnumerator());
|
---|
734 | enumerators[0].Reset();
|
---|
735 |
|
---|
736 | foreach (var child in node.ChildNodes) {
|
---|
737 | var enumerator = new NodeEnumerator(child);
|
---|
738 | enumerator.Reset();
|
---|
739 | enumerator.MoveNext();
|
---|
740 | enumerators.Add(enumerator);
|
---|
741 | }
|
---|
742 | }
|
---|
743 | }
|
---|
744 | }
|
---|