using System; using System.Collections; using System.Collections.Generic; using System.Diagnostics; using System.IO; using System.Linq; using System.Reflection; using System.Text; using System.Threading; using System.Threading.Tasks; using HeuristicLab.Algorithms.EvolutionStrategy; using HeuristicLab.Algorithms.GeneticAlgorithm; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.RealVectorEncoding; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; //using HeuristicLab.Hive.ExperimentManager; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.PluginInfrastructure; using HeuristicLab.PluginInfrastructure.Manager; using HeuristicLab.Problems.DataAnalysis.Symbolic; using HeuristicLab.Problems.MetaOptimization; using HeuristicLab.Problems.TestFunctions; using HeuristicLab.Random; using HeuristicLab.Selection; namespace HeuristicLab.MetaOptimization.Test { class Program { static void Main(string[] args) { PluginManager pm = new PluginManager(Path.GetDirectoryName(Assembly.GetExecutingAssembly().Location)); pm.DiscoverAndCheckPlugins(); pm.Run(pm.Applications.Where(x => x.Name == "TestApp").SingleOrDefault()); } } [Plugin("TestPlugin", "1.0.0.0")] [PluginFile("HeuristicLab.MetaOptimization.Test.exe", PluginFileType.Assembly)] public class TestPlugin : PluginBase { } [Application("TestApp")] public class TestApp : ApplicationBase { //private static int metaAlgorithmPopulationSize = 30; //private static int metaAlgorithmMaxGenerations = 30; //private static int metaProblemRepetitions = 3; //private static int baseAlgorithmMaxGenerations = 500; //private static double mutationProbability = 0.10; private static int metaAlgorithmPopulationSize = 3; private static int metaAlgorithmMaxGenerations = 10; private static double metaAlgorithmMutationProbability = 0.10; private static int metaProblemRepetitions = 2; private static int baseAlgorithmMaxGenerations = 1; private static int baseAlgorithmPopulationSize = 5; public override void Run() { ContentManager.Initialize(new PersistenceContentManager()); //TestTableBuilder(); //TestShorten(); bool y = ParameterConfiguration.IsSubclassOfRawGeneric(typeof(Tuple<,,,>), typeof(Tuple<,>)); bool a = ParameterConfiguration.IsSubclassOfRawGeneric(typeof(Tuple<>), typeof(Tuple)); var x = typeof(float).IsPrimitive; //TestSimilarities(); return; //TestIntSampling(); //TestDoubleSampling(); return; //TestTypeDiscovery(); //TestOperators(); return; //TestCombinations(); //TestCombinations2(); //TestCombinations3(); //TestEnumeratorCollectionEnumerator(); //TestCombinations4(); return; //TestAlgorithmPerformanceIssue(); return; //TestWaitAny(); //TestExecutionTimeUpdateInvervalPerformance(); //TestMemoryConsumption(); //TestNormalCrossover(); //TestItemDictionary(); //TestSymbolicDataAnalysisGrammar(); return; //TestObjectGraphObjectsTraversal(); return; //TestParameterizedItem(); return; //MetaOptimizationProblem metaOptimizationProblem = LoadOptimizationProblem("Meta Optimization Problem (Genetic Programming - Symbolic Regression 3.4 scaled).hl"); //var algorithmVc = metaOptimizationProblem.ParameterConfigurationTree; //var metaOptimizationProblem = new MetaOptimizationProblem(); //var algorithmVc = SetupGAAlgorithm(typeof(GeneticAlgorithm), metaOptimizationProblem); // import classification 4 problems var metaOptimizationProblem = ((MetaOptimizationProblem)ContentManager.Load("MetaOpt GA,OSGA,Classification (melanoma,respiratory,wisconsin,prostata),MSE-Evaluator_test.hl")); metaOptimizationProblem.QualityMeasureNameParameter.Value.Value = "Best training solution.Mean squared error (test)"; metaOptimizationProblem.Repetitions = new IntValue(metaProblemRepetitions); GeneticAlgorithm metaLevelAlgorithm = GetSequentialMetaGA(metaOptimizationProblem); //GeneticAlgorithm metaLevelAlgorithm = GetParallelMetaGA(metaOptimizationProblem); //GeneticAlgorithm metaLevelAlgorithm = GetHiveParallelMetaGA(metaOptimizationProblem); //EvolutionStrategy metaLevelAlgorithm = GetMetaES(metaOptimizationProblem); //Console.WriteLine("Press enter to start"); Console.ReadLine(); //TestConfiguration(algorithmVc, typeof(GeneticAlgorithm), metaOptimizationProblem.Problems.First()); //Console.WriteLine("Press enter to start"); Console.ReadLine(); TestOptimization(metaLevelAlgorithm); //TestMemoryLeak(metaLevelAlgorithm); Console.ReadLine(); } private void TestParameterizedItem() { var value = new MyParameterizedItem(); Console.WriteLine("P1=1;; " + value.ToString()); var vc = new ParameterizedValueConfiguration(value, typeof(MyParameterizedItem), true); vc.Optimize = true; ((IntValue)vc.ParameterConfigurations.Single(x => x.Name == "P1").ActualValue.Value).Value = 22; Console.WriteLine("P1=22;; " + value.ToString()); vc.ParameterConfigurations.Single(x => x.Name == "P1").ActualValue.Value = new IntValue(33); Console.WriteLine("P1=33;; " + value.ToString()); vc.Parameterize(value); Console.WriteLine("P1=33;; " + value.ToString()); Console.ReadLine(); } private void TestObjectGraphObjectsTraversal() { //var obj = new GeneticAlgorithm(); var obj = ContentManager.Load("Genetic Programming - Symbolic Regression 3.4_scaled_paused.hl"); Console.WriteLine("loaded"); for (int i = 0; i < 10; i++) { var sw = new Stopwatch(); sw.Start(); var objects = obj.GetObjectGraphObjects().ToArray(); sw.Stop(); var typeCount = GetTypeCount(objects).ToArray(); Console.WriteLine("objects: {0}", objects.Count()); Console.WriteLine(sw.Elapsed); } } private IOrderedEnumerable> GetTypeCount(object[] objects) { var dict = new Dictionary(); foreach (var item in objects) { var t = item.GetType(); if (!dict.ContainsKey(t)) dict.Add(t, 0); dict[t]++; } return dict.OrderByDescending(x => x.Value); } private MetaOptimizationProblem LoadOptimizationProblem(string filename) { return (MetaOptimizationProblem)ContentManager.Load(filename); } private void TestSymbolicDataAnalysisGrammar() { var random = new MersenneTwister(); var grammar1 = new TypeCoherentExpressionGrammar(); var grammar2 = new TypeCoherentExpressionGrammar(); Console.WriteLine("========== Grammar1: =========="); PrintGrammar(grammar1); //Console.WriteLine("========== Grammar2: =========="); //PrintGrammar(grammar2); var vc1 = new SymbolicExpressionGrammarValueConfiguration(grammar1); string info = vc1.ParameterInfoString; ConfigureSymbolicExpressionGrammarVc(vc1); info = vc1.ParameterInfoString; var vc2 = new SymbolicExpressionGrammarValueConfiguration(grammar2); ConfigureSymbolicExpressionGrammarVc(vc2); vc1.Mutate(random, new MutateDelegate(ParameterConfigurationManipulator.Mutate), new UniformIntValueManipulator(), new UniformDoubleValueManipulator()); vc1.Parameterize(grammar1); Console.WriteLine("========== Grammar1 (mutated): =========="); PrintGrammar(grammar1); vc1.Cross(random, vc2, new CrossDelegate(ParameterConfigurationCrossover.Cross), new DiscreteIntValueCrossover(), new AverageDoubleValueCrossover()); vc1.Parameterize(grammar1); Console.WriteLine("========== Grammar1 (crossed): =========="); PrintGrammar(grammar1); //RealVector v1 = GetInitialFrequenciesAsRealVector(grammar1); //RealVector v2 = GetInitialFrequenciesAsRealVector(grammar2); //for (int i = 0; i < 10; i++) { // RealVector v3 = DiscreteCrossover.Apply(random, new ItemArray(new List { v1, v2 })); // var grammar3 = new TypeCoherentExpressionGrammar(); // SetInitialFrequenciesFromRealVector(grammar3, v3); // Console.WriteLine("\n========== Crossed: =========="); // PrintGrammar(grammar3); //} } private static void PrintGrammar(TypeCoherentExpressionGrammar grammar) { foreach (var symbol in grammar.Symbols) { Console.WriteLine("{0} ({1})", symbol.ToString(), symbol.InitialFrequency); } } private static RealVector GetInitialFrequenciesAsRealVector(TypeCoherentExpressionGrammar grammar) { var vector = new RealVector(grammar.Symbols.Count()); for (int i = 0; i < grammar.Symbols.Count(); i++) { vector[i] = grammar.Symbols.ElementAt(i).InitialFrequency; } return vector; } private static void SetInitialFrequenciesFromRealVector(TypeCoherentExpressionGrammar grammar, RealVector vector) { for (int i = 0; i < grammar.Symbols.Count(); i++) { grammar.Symbols.ElementAt(i).InitialFrequency = vector[i]; } } private static void TestSimilarities() { Console.WriteLine("\nDoubleRange:"); var doubleRange = new DoubleValueRange(new DoubleValue(0), new DoubleValue(10), new DoubleValue(1)); var a = new DoubleValue(5.0); for (double d = 0; d < 10; d += 0.1) { var similarity = doubleRange.CalculateSimilarity(a, new DoubleValue(d)); Console.WriteLine("{0}: {1}", d, similarity); } Console.WriteLine("\nPecentRange:"); var percentRange = new PercentValueRange(new PercentValue(0), new PercentValue(1), new PercentValue(1)); var b = new PercentValue(0.05); for (double d = 0; d < 1; d += 0.01) { var similarity = percentRange.CalculateSimilarity(b, new PercentValue(d)); Console.WriteLine("{0}: {1}", d, similarity); } Console.WriteLine("\nIntRange:"); var intRange = new IntValueRange(new IntValue(50), new IntValue(100), new IntValue(1)); var c = new IntValue(90); for (int i = 0; i < 100; i++) { var similarity = intRange.CalculateSimilarity(c, new IntValue(i)); Console.WriteLine("{0}: {1}", i, similarity); } Console.WriteLine("\nValueConfigurations:"); var vc1 = SetupGAAlgorithm(typeof(GeneticAlgorithm), new MetaOptimizationProblem()); vc1.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "Elites").Optimize = true; vc1.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "PopulationSize").Optimize = true; vc1.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MutationProbability").Optimize = true; vc1.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "Selector").Optimize = true; var vc2 = (ParameterConfigurationTree)vc1.Clone(); Console.WriteLine("Assert(1): {0}", vc1.CalculateSimilarity(vc2)); ((IntValue)vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "PopulationSize").ValueConfigurations[0].ActualValue.Value).Value = 75; Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2)); ((PercentValue)vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MutationProbability").ValueConfigurations[0].ActualValue.Value).Value = 0.15; Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2)); ((PercentValue)vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MutationProbability").ValueConfigurations[0].ActualValue.Value).Value = 0.25; Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2)); ((PercentValue)vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MutationProbability").ValueConfigurations[0].ActualValue.Value).Value = 0.35; Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2)); ((PercentValue)vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MutationProbability").ValueConfigurations[0].ActualValue.Value).Value = 0.45; Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2)); ((PercentValue)vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MutationProbability").ValueConfigurations[0].ActualValue.Value).Value = 0.55; Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2)); vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "Selector").ActualValueConfigurationIndex = 3; Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2)); var random = new Random.MersenneTwister(0); for (int i = 0; i < 10; i++) { vc2.Randomize(random); Console.WriteLine("Randomized: {0}", vc1.CalculateSimilarity(vc2)); } } private static void TestItemDictionary() { var dict = new ItemDictionary(); dict.Add(new StringValue("a"), new RunCollection()); dict.Add(new StringValue("b"), new RunCollection()); dict.Add(new StringValue("c"), new RunCollection()); Console.WriteLine(dict.ContainsKey(new StringValue("a"))); Console.WriteLine(dict.Count(x => x.Key.Value == "a")); } private static void TestNormalCrossover() { var random = new MersenneTwister(); double d1 = 0.5; double d2 = 0.6; var doubleRange = new DoubleValueRange(new DoubleValue(0.0), new DoubleValue(1.0), new DoubleValue(0.01)); using (var sw = new StreamWriter("normalCrossover-DoubleValue.txt")) { for (int i = 0; i < 10000; i++) { sw.WriteLine(NormalDoubleValueCrossover.ApplyStatic(random, new DoubleValue(d1), new DoubleValue(d2), doubleRange)); } } int i1 = 180; int i2 = 160; var intRange = new IntValueRange(new IntValue(100), new IntValue(200), new IntValue(1)); using (var sw = new StreamWriter("normalCrossover-IntValue.txt")) { for (int i = 0; i < 10000; i++) { sw.WriteLine(NormalIntValueCrossover.ApplyStatic(random, new IntValue(i1), new IntValue(i2), intRange)); } } } private static void TestMemoryConsumption() { Queue latestExecutionTimes = new Queue(); GeneticAlgorithm ga = new GeneticAlgorithm(); ga.PopulationSize.Value = 3; ga.MaximumGenerations.Value = 1; ga.Engine = new SequentialEngine.SequentialEngine(); throw new NotImplementedException("TODO: set ga properties correctly"); MetaOptimizationProblem metaOptimizationProblem = new MetaOptimizationProblem(); metaOptimizationProblem.Repetitions = new IntValue(metaProblemRepetitions); GeneticAlgorithm metaLevelAlgorithm = GetSequentialMetaGA(metaOptimizationProblem); ParameterConfigurationTree algorithmVc = SetupGAAlgorithm(typeof(GeneticAlgorithm), metaOptimizationProblem); Stopwatch sw = new Stopwatch(); var algs = new List(); for (int i = 0; i < 10000; i++) { sw.Start(); GeneticAlgorithm clonedGa = (GeneticAlgorithm)ga.Clone(); clonedGa.Name = "CLONED GA"; algorithmVc.Parameterize(clonedGa); algs.Add(clonedGa); sw.Reset(); ContentManager.Save((IStorableContent)metaLevelAlgorithm, "alg_" + i + ".hl", true); Console.WriteLine("Cloned alg #{0}", i); } } private static void TestExecutionTimeUpdateInvervalPerformance() { TableBuilder tb = new TableBuilder("Tasks", "Interval", "TotalExecutionTime", "AvgExecutionTime", "TimeElapsed", "TotalTimeElapsed", "Speedup", "ExecutionTimeChangedCount", "RealExecutionTimeUpdate(ms)"); int tasks = 4; int repetitions = 3; // warmup RepeatExecuteParallel(3, 1, 1, tb); tb.AppendRow("--", "--", "--", "--", "--", "--", "--", "--", "--"); RepeatExecuteParallel(repetitions, tasks, 1, tb); RepeatExecuteParallel(repetitions, tasks, 2.5, tb); RepeatExecuteParallel(repetitions, tasks, 5, tb); RepeatExecuteParallel(repetitions, tasks, 10, tb); RepeatExecuteParallel(repetitions, tasks, 25, tb); RepeatExecuteParallel(repetitions, tasks, 50, tb); RepeatExecuteParallel(repetitions, tasks, 100, tb); RepeatExecuteParallel(repetitions, tasks, 250, tb); RepeatExecuteParallel(repetitions, tasks, 500, tb); RepeatExecuteParallel(repetitions, tasks, 1000, tb); RepeatExecuteParallel(repetitions, tasks, 2500, tb); RepeatExecuteParallel(repetitions, tasks, 5000, tb); using (var sw = new StreamWriter("TestExecutionTimeUpdateInvervalPerformance.txt")) { sw.Write(tb.ToString()); } } private static GeneticAlgorithm CreateGA() { GeneticAlgorithm ga = new GeneticAlgorithm(); ga.Problem = new SingleObjectiveTestFunctionProblem() { ProblemSize = new IntValue(250) }; ga.Engine = new SequentialEngine.SequentialEngine(); ga.SetSeedRandomly.Value = false; ga.Seed.Value = 0; return ga; } private static void RepeatExecuteParallel(int repetitions, int tasks, double executionTimeUpdateIntervalMs, TableBuilder tb) { for (int i = 0; i < repetitions; i++) { ExecuteParallel(tasks, executionTimeUpdateIntervalMs, tb); Console.Clear(); Console.WriteLine(tb.ToString()); } } private static void ExecuteParallel(int taskCount, double executionTimeUpdateIntervalMs, TableBuilder tb) { Task[] tasks = new Task[taskCount]; EngineAlgorithm[] algs = new EngineAlgorithm[taskCount]; for (int i = 0; i < taskCount; i++) { GeneticAlgorithm alg = CreateGA(); //((Engine)alg.Engine).ExecutionTimeUpdateInterval = TimeSpan.FromMilliseconds(executionTimeUpdateIntervalMs); algs[i] = alg; } Console.WriteLine("Creating algs finished."); for (int i = 0; i < taskCount; i++) { tasks[i] = new Task((alg) => { Console.WriteLine("Task {0} started.", Task.CurrentId); var cancellationTokenSource = new CancellationTokenSource(); Stopwatch swx = new Stopwatch(); swx.Start(); ((EngineAlgorithm)alg).ExecutionTimeChanged += new EventHandler(Program_ExecutionTimeChanged); ((EngineAlgorithm)alg).StartSync(cancellationTokenSource.Token); ((EngineAlgorithm)alg).ExecutionTimeChanged -= new EventHandler(Program_ExecutionTimeChanged); swx.Stop(); Console.WriteLine("Task {0} finished.", Task.CurrentId); return swx.Elapsed; }, algs[i]); } Console.WriteLine("Creating tasks finished."); counter = 0; Stopwatch sw = new Stopwatch(); sw.Start(); foreach (var task in tasks) task.Start(); Task.WaitAll(tasks); sw.Stop(); if (!algs.All(alg => alg.ExecutionState == ExecutionState.Stopped)) throw new Exception("Not all algs stopped properly"); if (!algs.All(alg => ((DoubleValue)alg.Results["BestQuality"].Value).Value == ((DoubleValue)algs.First().Results["BestQuality"].Value).Value)) throw new Exception("Not all algs have the same resutls"); if (tb != null) { double totalExecutionTimeMilliseconds = algs.Select(x => x.ExecutionTime.TotalMilliseconds).Sum(); double totalMilliseconds = tasks.Select(t => t.Result.TotalMilliseconds).Sum(); tb.AppendRow( taskCount.ToString(), executionTimeUpdateIntervalMs.ToString(), TimeSpan.FromMilliseconds(totalExecutionTimeMilliseconds).ToString(), TimeSpan.FromMilliseconds(totalExecutionTimeMilliseconds / taskCount).ToString(), sw.Elapsed.ToString(), TimeSpan.FromMilliseconds(totalMilliseconds).ToString(), (totalMilliseconds / sw.ElapsedMilliseconds).ToString("0.00"), counter.ToString(), (totalExecutionTimeMilliseconds / counter).ToString("0.00")); } tasks = null; algs = null; GC.Collect(); Console.WriteLine("Test finished."); } private static int counter = 0; static void Program_ExecutionTimeChanged(object sender, EventArgs e) { System.Threading.Interlocked.Increment(ref counter); } private static void TestWaitAny() { System.Random rand = new System.Random(); var tasks = new List>(); for (int i = 0; i < 10; i++) { tasks.Add(Task.Factory.StartNew((x) => { int sleep = ((int)x - 10) * -1000; Console.WriteLine("sleeping: {0} ms", sleep); Thread.Sleep(0); // make context switch Thread.Sleep(sleep); return (int)x * (int)x; }, i)); } // --> WaitAll processes tasks lazy but in order. Task.WaitAll(); foreach (var task in tasks) { Console.WriteLine(task.Result); } // -> WaitAny processes any finished task first. but the finished task needs to be removed from list in order to process all tasks //for (int i = 0; i < 10; i++) { // var tasksArray = tasks.ToArray(); // var task = tasksArray[Task.WaitAny(tasksArray)]; // Console.WriteLine(task.Result); // tasks.Remove(task); //} Console.WriteLine("Finished TestWaitAny"); } private static void TestAlgorithmPerformanceIssue() { Queue latestExecutionTimes = new Queue(); int size = 10; var random = new Random.MersenneTwister(0); GeneticAlgorithm ga = new GeneticAlgorithm(); ga.PopulationSize.Value = 5; ga.MaximumGenerations.Value = 5; ga.Engine = new SequentialEngine.SequentialEngine(); ga.Problem = new SingleObjectiveTestFunctionProblem(); //MetaOptimizationProblem metaOptimizationProblem = new MetaOptimizationProblem(); ////metaOptimizationProblem.Repetitions = new IntValue(metaProblemRepetitions); //GeneticAlgorithm metaLevelAlgorithm = GetMetaGA(metaOptimizationProblem); //ParameterConfigurationTree algorithmVc = SetupGAAlgorithm(typeof(GeneticAlgorithm), metaOptimizationProblem); //algorithmVc.Randomize(random); Stopwatch sw = new Stopwatch(); var algs = new Queue(); // keep them in memory // -> BINGO! -> .NET cannot hold more than 16 algorithms with their ThreadLocal objects efficiently, // so if they are kept in memory, runtime at the 17. execution drops significantly // because creating ThreadLocal takes all the runtime. // when the algs are not stored in a list however this effect does not occur. for (int i = 0; i < 10000; i++) { GeneticAlgorithm clonedGa = (GeneticAlgorithm)ga.Clone(); clonedGa.Name = "CLONED GA"; //algorithmVc.Randomize(random); //algorithmVc.Parameterize(clonedGa); clonedGa.Prepare(true); sw.Start(); algs.Enqueue(clonedGa); var cancellationTokenSource = new CancellationTokenSource(); //if (algs.Count > 24) // algs.Dequeue(); clonedGa.StartSync(cancellationTokenSource.Token); sw.Stop(); latestExecutionTimes.Enqueue(sw.Elapsed); Console.WriteLine("{0}: {1} ({2})", i, sw.Elapsed, latestExecutionTimes.Count > size ? TimeSpan.FromMilliseconds(latestExecutionTimes.Average(t => t.TotalMilliseconds)).ToString() : "-"); if (latestExecutionTimes.Count > size) { latestExecutionTimes.Dequeue(); } sw.Reset(); //Console.ReadLine(); } } private static void TestTableBuilder() { TableBuilder tb = new TableBuilder("column_1", "col2", "col3"); tb.AppendRow("1", "humpi", "0.23124"); tb.AppendRow("2", "sf", "0.23124"); tb.AppendRow("5", "humpi dampti", "0.224"); tb.AppendRow("10", "egon asdf", "0.4"); tb.AppendRow("15", "MichaelizcMultiVfds", "0.23124564"); Console.WriteLine(tb.ToString()); } private static void TestToInfoString(IValueConfiguration algorithmVc) { var random = new MersenneTwister(); Console.WriteLine(algorithmVc.ParameterInfoString); algorithmVc.Randomize(random); Console.WriteLine(algorithmVc.ParameterInfoString); algorithmVc.Randomize(random); Console.WriteLine(algorithmVc.ParameterInfoString); algorithmVc.Randomize(random); } private static void TestCombinations() { Console.WriteLine("IntRange 3-18:3"); IntValueRange intRange = new IntValueRange(new IntValue(3), new IntValue(18), new IntValue(3)); foreach (var val in intRange.GetCombinations()) { Console.WriteLine(val); } Console.WriteLine("DoubleRange 1.0-2.5:0.5"); var dblRange = new DoubleValueRange(new DoubleValue(0.7), new DoubleValue(2.8), new DoubleValue(0.5)); foreach (var val in dblRange.GetCombinations()) { Console.WriteLine(val); } Console.WriteLine("PercentRange 33%-66%:33%"); var pctRange = new PercentValueRange(new PercentValue(0.32), new PercentValue(0.98), new PercentValue(0.33)); foreach (var val in pctRange.GetCombinations()) { Console.WriteLine(val); } } private static void TestCombinations3() { Node root = new Node("root"); root.ChildNodes.Add(new Node("root.n1")); root.ChildNodes.Add(new Node("root.n2")); Node n3 = new Node("root.n3"); n3.ChildNodes.Add(new Node("root.n3.n1")); n3.ChildNodes.Add(new Node("root.n3.n2")); root.ChildNodes.Add(n3); Console.WriteLine(root.ToString()); Console.WriteLine("--"); int cnt = 0; var enumerator = new NodeEnumerator(root); enumerator.Reset(); while (enumerator.MoveNext()) { Console.WriteLine(enumerator.Current.ToString()); cnt++; } Console.WriteLine("count: " + cnt); } private static void TestEnumeratorCollectionEnumerator() { IEnumerable list1 = new int[] { 1, 2, 3, 4, 5 }; IEnumerable list2 = new int[] { 10, 20, 30 }; IEnumerable list3 = new int[] { 300, 400, 500 }; var enumerators = new List(); EnumeratorCollectionEnumerator enu = new EnumeratorCollectionEnumerator(); enu.AddEnumerator(list1.GetEnumerator()); enu.AddEnumerator(list2.GetEnumerator()); enu.AddEnumerator(list3.GetEnumerator()); enu.Reset(); while (enu.MoveNext()) { Console.WriteLine(enu.Current); } } private static void TestCombinations4() { GeneticAlgorithm ga = new GeneticAlgorithm(); ga.Problem = new SingleObjectiveTestFunctionProblem(); ga.Engine = new SequentialEngine.SequentialEngine(); ParameterConfigurationTree vc = new ParameterConfigurationTree(ga, new SingleObjectiveTestFunctionProblem()); ConfigurePopulationSize(vc, 20, 100, 20); //ConfigureMutationRate(vc, 0.10, 0.60, 0.10); ConfigureMutationOperator(vc); //ConfigureSelectionOperator(vc, true); int count = 0; IEnumerator enumerator = new ParameterCombinationsEnumerator(vc); enumerator.Reset(); while (enumerator.MoveNext()) { var current = (IValueConfiguration)enumerator.Current; count++; Console.WriteLine(current.ParameterInfoString); } Console.WriteLine("You are about to create {0} algorithms.", count); Experiment experiment = vc.GenerateExperiment(ga); //foreach (var opt in experiment.Optimizers) { // Console.WriteLine(opt.Name); //} experiment.Prepare(); experiment.Start(); while (experiment.ExecutionState != ExecutionState.Stopped) { Thread.Sleep(500); } } private static void TestOperators() { IRandom random = new MersenneTwister(); var doubleRange = new DoubleValueRange(new DoubleValue(0), new DoubleValue(1), new DoubleValue(0.001)); using (var sw = new StreamWriter("out-DoubleValue.txt")) { for (int i = 0; i < 10000; i++) { var val = new DoubleValue(0.0); NormalDoubleValueManipulator.ApplyStatic(random, val, doubleRange); sw.WriteLine(val); Debug.Assert(val.Value >= 0.0 && val.Value <= 1.0); } } var percentRange = new PercentValueRange(new PercentValue(0), new PercentValue(1), new PercentValue(0.001)); using (var sw = new StreamWriter("out-PercentValue.txt")) { for (int i = 0; i < 10000; i++) { var val = new PercentValue(0.5); NormalDoubleValueManipulator.ApplyStatic(random, val, percentRange.AsDoubleValueRange()); sw.WriteLine(val); } } var intRange = new IntValueRange(new IntValue(0), new IntValue(100), new IntValue(1)); using (var sw = new StreamWriter("out-IntValue.txt")) { for (int i = 0; i < 10000; i++) { var val = new IntValue(50); UniformIntValueManipulator.ApplyStatic(random, val, intRange); sw.WriteLine(val); } } using (var sw = new StreamWriter("out-DoubleValueCrossed.txt")) { for (int i = 0; i < 10000; i++) { var val1 = new DoubleValue(0.0); var val2 = new DoubleValue(0.5); var val3 = NormalDoubleValueCrossover.ApplyStatic(random, val1, val2, doubleRange); sw.WriteLine(val3); Debug.Assert(val3.Value >= 0.0 && val3.Value <= 1.0); } } Console.ReadLine(); } private static void TestTypeDiscovery() { var items = ApplicationManager.Manager.GetInstances(typeof(DoubleArray)).ToArray(); foreach (var item in items) { Console.WriteLine(item.ToString()); } } private static void TestMemoryLeak(GeneticAlgorithm metaLevelAlgorithm) { IValueConfiguration algorithmVc = ((MetaOptimizationProblem)metaLevelAlgorithm.Problem).ParameterConfigurationTree; Console.WriteLine("Starting Memory Test..."); Console.ReadLine(); var clones = new List(); for (int i = 0; i < 1000; i++) { var clone = algorithmVc.Clone(); clones.Add(clone); } Console.WriteLine("Finished. Now GC..."); Console.ReadLine(); GC.Collect(); Console.WriteLine("Finished!"); Console.ReadLine(); } private static GeneticAlgorithm GetSequentialMetaGA(MetaOptimizationProblem metaOptimizationProblem) { GeneticAlgorithm metaLevelAlgorithm = new GeneticAlgorithm(); metaLevelAlgorithm.PopulationSize.Value = metaAlgorithmPopulationSize; metaLevelAlgorithm.MaximumGenerations.Value = metaAlgorithmMaxGenerations; metaLevelAlgorithm.Problem = metaOptimizationProblem; metaLevelAlgorithm.Engine = new SequentialEngine.SequentialEngine(); metaLevelAlgorithm.Mutator = ((OptionalConstrainedValueParameter)((IAlgorithm)metaLevelAlgorithm).Parameters["Mutator"]).ValidValues.Where(x => x.GetType() == typeof(ParameterConfigurationOnePositionsManipulator)).Single(); //metaLevelAlgorithm.Mutator = ((OptionalConstrainedValueParameter)((IAlgorithm)metaLevelAlgorithm).Parameters["Mutator"]).ValidValues.Where(x => x.GetType() == typeof(ParameterConfigurationAllPositionsManipulator)).Single(); metaLevelAlgorithm.MutationProbability.Value = metaAlgorithmMutationProbability; //metaLevelAlgorithm.Selector = ((OptionalConstrainedValueParameter)((IAlgorithm)metaLevelAlgorithm).Parameters["Selector"]).ValidValues.Where(x => x.GetType() == typeof(LinearRankSelector)).Single(); //metaLevelAlgorithm.Selector = ((OptionalConstrainedValueParameter)((IAlgorithm)metaLevelAlgorithm).Parameters["Selector"]).ValidValues.Where(x => x.GetType() == typeof(TournamentSelector)).Single(); //metaLevelAlgorithm.Selector = ((OptionalConstrainedValueParameter)((IAlgorithm)metaLevelAlgorithm).Parameters["Selector"]).ValidValues.Where(x => x.GetType() == typeof(GenderSpecificSelector)).Single(); //metaLevelAlgorithm.Selector = ((OptionalConstrainedValueParameter)((IAlgorithm)metaLevelAlgorithm).Parameters["Selector"]).ValidValues.Where(x => x.GetType() == typeof(BestSelector)).Single(); metaLevelAlgorithm.Selector = ((OptionalConstrainedValueParameter)((IAlgorithm)metaLevelAlgorithm).Parameters["Selector"]).ValidValues.Where(x => x.GetType() == typeof(TournamentSelector)).Single(); metaLevelAlgorithm.SetSeedRandomly.Value = false; //metaLevelAlgorithm.Seed.Value = new MersenneTwister().Next(0, 1000000); metaLevelAlgorithm.Seed.Value = 527875; return metaLevelAlgorithm; } private static GeneticAlgorithm GetParallelMetaGA(MetaOptimizationProblem metaOptimizationProblem) { GeneticAlgorithm metaLevelAlgorithm = GetSequentialMetaGA(metaOptimizationProblem); metaLevelAlgorithm.Engine = new ParallelEngine.ParallelEngine(); return metaLevelAlgorithm; } //private static GeneticAlgorithm GetHiveParallelMetaGA(MetaOptimizationProblem metaOptimizationProblem) { // GeneticAlgorithm metaLevelAlgorithm = GetParallelMetaGA(metaOptimizationProblem); // metaLevelAlgorithm.Engine = new HiveEngine.HiveEngine(); // ServiceLocator.Instance.ClientFacadePool.UserName = "cneumuel"; // ServiceLocator.Instance.ClientFacadePool.Password = "cneumuel"; // ServiceLocator.Instance.StreamedClientFacadePool.UserName = "cneumuel"; // ServiceLocator.Instance.StreamedClientFacadePool.Password = "cneumuel"; // return metaLevelAlgorithm; //} private static EvolutionStrategy GetMetaES(MetaOptimizationProblem metaOptimizationProblem) { EvolutionStrategy metaLevelAlgorithm = new EvolutionStrategy(); metaLevelAlgorithm.PopulationSize.Value = metaAlgorithmPopulationSize; metaLevelAlgorithm.MaximumGenerations.Value = metaAlgorithmMaxGenerations; metaLevelAlgorithm.Problem = metaOptimizationProblem; metaLevelAlgorithm.Engine = new SequentialEngine.SequentialEngine(); metaLevelAlgorithm.Mutator = ((OptionalConstrainedValueParameter)((IAlgorithm)metaLevelAlgorithm).Parameters["Mutator"]).ValidValues.Last(); return metaLevelAlgorithm; } private static ParameterConfigurationTree SetupGAAlgorithm(Type baseLevelAlgorithmType, MetaOptimizationProblem metaOptimizationProblem) { metaOptimizationProblem.AlgorithmType.Value = baseLevelAlgorithmType; //metaOptimizationProblem.ProblemType.Value = typeof(SingleObjectiveTestFunctionProblem); //metaOptimizationProblem.Problems.Clear(); //metaOptimizationProblem.Problems.Add(new HeuristicLab.Problems.TestFunctions.SingleObjectiveTestFunctionProblem() { // Evaluator = new GriewankEvaluator(), // ProblemSize = new IntValue(2) //}); //metaOptimizationProblem.Problems.Add(new HeuristicLab.Problems.TestFunctions.SingleObjectiveTestFunctionProblem() { // Evaluator = new GriewankEvaluator(), // ProblemSize = new IntValue(50) //}); //metaOptimizationProblem.Problems.Add(new HeuristicLab.Problems.TestFunctions.SingleObjectiveTestFunctionProblem() { // Evaluator = new GriewankEvaluator(), // ProblemSize = new IntValue(500) //}); //metaOptimizationProblem.ProblemType.Value = typeof(SymbolicRegressionSingleObjectiveProblem); //metaOptimizationProblem.Maximization.Value = true; // tower problem //metaOptimizationProblem.ImportAlgorithm((IAlgorithm)ContentManager.Load("Genetic Programming - Symbolic Regression 3.4_scaled.hl")); //metaOptimizationProblem.Maximization.Value = true; // tsp //metaOptimizationProblem.ProblemType.Value = typeof(TravelingSalesmanProblem); ParameterConfigurationTree algorithmVc = metaOptimizationProblem.ParameterConfigurationTree; ((IntValue)algorithmVc.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MaximumGenerations").ActualValue.Value).Value = baseAlgorithmMaxGenerations; ((IntValue)algorithmVc.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "PopulationSize").ActualValue.Value).Value = baseAlgorithmPopulationSize; //ConfigurePopulationSize(algorithmVc, 10, 100, 1); //ConfigureMutationRate(algorithmVc, 0.0, 1.0, 0.01); //ConfigureMutationOperator(algorithmVc); //ConfigureElites(algorithmVc, 0, 5, 1); //ConfigureSelectionOperator(algorithmVc, true); //ConfigureSymbolicExpressionGrammar(algorithmVc); return algorithmVc; } private static void ConfigureSymbolicExpressionGrammar(ParameterConfigurationTree vc) { var pc = vc.ProblemConfiguration.ParameterConfigurations.Single(x => x.Name == "SymbolicExpressionTreeGrammar"); pc.Optimize = true; SymbolicExpressionGrammarValueConfiguration symbolicExpressionGrammarVc = null; foreach (var valconf in pc.ValueConfigurations) { if (valconf.ActualValue.Value.ItemName != "TypeCoherentExpressionGrammar") { pc.ValueConfigurations.SetItemCheckedState(valconf, false); } else { symbolicExpressionGrammarVc = valconf as SymbolicExpressionGrammarValueConfiguration; } } ConfigureSymbolicExpressionGrammarVc(symbolicExpressionGrammarVc); } private static void ConfigureSymbolicExpressionGrammarVc(SymbolicExpressionGrammarValueConfiguration symbolicExpressionGrammarVc) { symbolicExpressionGrammarVc.Optimize = true; SetInitialFrequencyValue(symbolicExpressionGrammarVc, "Addition", 1.0); SetInitialFrequencyValue(symbolicExpressionGrammarVc, "Subtraction", 1.0); SetInitialFrequencyValue(symbolicExpressionGrammarVc, "Multiplication", 1.0); SetInitialFrequencyValue(symbolicExpressionGrammarVc, "Division", 1.0); SetInitialFrequencyValue(symbolicExpressionGrammarVc, "Average", 1.0); SetInitialFrequencyValue(symbolicExpressionGrammarVc, "IfThenElse", 0.0); SetInitialFrequencyValue(symbolicExpressionGrammarVc, "GreaterThan", 0.0); SetInitialFrequencyValue(symbolicExpressionGrammarVc, "LessThan", 0.0); SetInitialFrequencyValue(symbolicExpressionGrammarVc, "And", 0.0); SetInitialFrequencyValue(symbolicExpressionGrammarVc, "Or", 0.0); SetInitialFrequencyValue(symbolicExpressionGrammarVc, "Not", 0.0); SetInitialFrequencyValue(symbolicExpressionGrammarVc, "Sine", 0.0); SetInitialFrequencyValue(symbolicExpressionGrammarVc, "Cosine", 0.0); SetInitialFrequencyValue(symbolicExpressionGrammarVc, "Tangent", 0.0); OptimizeInitialFrequency(symbolicExpressionGrammarVc, "Logarithm", "InitialFrequency", 0.0, 5.0, 0.01); OptimizeInitialFrequency(symbolicExpressionGrammarVc, "Power", "InitialFrequency", 0.0, 5.0, 0.01); OptimizeInitialFrequency(symbolicExpressionGrammarVc, "Root", "InitialFrequency", 0.0, 5.0, 0.01); OptimizeInitialFrequency(symbolicExpressionGrammarVc, "Variable", "WeightSigma", 0.01, 10.0, 0.01); OptimizeInitialFrequency(symbolicExpressionGrammarVc, "Variable", "WeightManipulatorSigma", 0.01, 10.0, 0.01); OptimizeInitialFrequency(symbolicExpressionGrammarVc, "Variable", "MultiplicativeWeightManipulatorSigma", 0.01, 10.0, 0.01); OptimizeInitialFrequency(symbolicExpressionGrammarVc, "Constant", "ManipulatorSigma", 0.01, 10.0, 0.01); OptimizeInitialFrequency(symbolicExpressionGrammarVc, "Constant", "MultiplicativeManipulatorSigma", 0.01, 10.0, 0.01); } private static void SetInitialFrequencyValue(SymbolicExpressionGrammarValueConfiguration symbolicExpressionGrammarVc, string symbolName, double value) { ((Symbol)symbolicExpressionGrammarVc.ParameterConfigurations.Single(x => x.Name == symbolName).ActualValue.Value).InitialFrequency = value; } private static void OptimizeInitialFrequency(SymbolicExpressionGrammarValueConfiguration symbolicExpressionGrammarVc, string symbolName, string parameterName, double lower, double upper, double step) { var pc = symbolicExpressionGrammarVc.ParameterConfigurations.Single(x => x.Name == symbolName); pc.Optimize = true; var vc = (SymbolValueConfiguration)pc.ValueConfigurations.Single(); var parameterPc = vc.ParameterConfigurations.Single(x => x.Name == parameterName); parameterPc.Optimize = true; parameterPc.ValueConfigurations.Clear(); var rvc = new RangeValueConfiguration(new DoubleValue(5.0), typeof(DoubleValue)); rvc.Optimize = true; ((DoubleValueRange)rvc.RangeConstraint).LowerBound.Value = lower; ((DoubleValueRange)rvc.RangeConstraint).UpperBound.Value = upper; ((DoubleValueRange)rvc.RangeConstraint).StepSize.Value = step; parameterPc.ValueConfigurations.Add(rvc); } private static void TestConfiguration(ParameterConfigurationTree algorithmVc, Type baseLevelAlgorithmType, IProblem problem) { IRandom rand = new FastRandom(0); var baseLevelAlgorithm = (GeneticAlgorithm)MetaOptimizationUtil.CreateParameterizedAlgorithmInstance(algorithmVc, baseLevelAlgorithmType, problem); // set random values for (int i = 0; i < 10; i++) { var clonedVc = (ParameterConfigurationTree)algorithmVc.Clone(); GeneticAlgorithm newAlg = (GeneticAlgorithm)baseLevelAlgorithm.Clone(); clonedVc.Randomize(rand); clonedVc.Parameterize(newAlg); Console.WriteLine(string.Format("PopSize: original: {0}, randomized: {1}", baseLevelAlgorithm.PopulationSize, newAlg.PopulationSize)); Console.WriteLine(string.Format("MutRate: original: {0}, randomized: {1}", baseLevelAlgorithm.MutationProbability, newAlg.MutationProbability)); Console.WriteLine(string.Format("MutOp: original: {0}, randomized: {1}", baseLevelAlgorithm.Mutator, newAlg.Mutator)); Console.WriteLine(string.Format("SelOp: original: {0}, randomized: {1}", baseLevelAlgorithm.Selector, newAlg.Selector)); //Console.WriteLine(string.Format("GrSi: original: {0}, randomized: {1}", "?", ((TournamentSelector)newAlg.Selector).GroupSizeParameter.Value)); Console.WriteLine("---"); } Console.WriteLine("======================="); algorithmVc.Randomize(rand); algorithmVc.Parameterize(baseLevelAlgorithm); // mutate for (int i = 0; i < 10; i++) { var clonedVc = (ParameterConfigurationTree)algorithmVc.Clone(); GeneticAlgorithm newAlg = (GeneticAlgorithm)baseLevelAlgorithm.Clone(); ParameterConfigurationManipulator.Apply(rand, clonedVc, new UniformIntValueManipulator(), new NormalDoubleValueManipulator()); clonedVc.Parameterize(newAlg); Console.WriteLine(string.Format("PopSize: original: {0}, mutated: {1}", baseLevelAlgorithm.PopulationSize, newAlg.PopulationSize)); Console.WriteLine(string.Format("MutRate: original: {0}, mutated: {1}", baseLevelAlgorithm.MutationProbability, newAlg.MutationProbability)); Console.WriteLine(string.Format("MutOp: original: {0}, mutated: {1}", baseLevelAlgorithm.Mutator, newAlg.Mutator)); Console.WriteLine(string.Format("SelOp: original: {0}, mutated: {1}", baseLevelAlgorithm.Selector, newAlg.Selector)); //Console.WriteLine(string.Format("GrSi: original: {0}, mutated: {1}", ((TournamentSelector)baseLevelAlgorithm.Selector).GroupSizeParameter.Value, ((TournamentSelector)newAlg.Selector).GroupSizeParameter.Value)); Console.WriteLine("---"); } Console.WriteLine("======================="); // cross for (int i = 0; i < 10; i++) { var clonedVc1 = (ParameterConfigurationTree)algorithmVc.Clone(); var clonedVc2 = (ParameterConfigurationTree)algorithmVc.Clone(); GeneticAlgorithm first = (GeneticAlgorithm)baseLevelAlgorithm.Clone(); GeneticAlgorithm second = (GeneticAlgorithm)baseLevelAlgorithm.Clone(); clonedVc1.Randomize(rand); clonedVc1.Parameterize(first); clonedVc2.Randomize(rand); clonedVc2.Parameterize(second); var popSizeBefore = first.PopulationSize.Value; var mutRateBefore = first.MutationProbability.Value; var mutOpBefore = first.Mutator; var selOpBefore = first.Selector; //var groupSizeBefore = ((TournamentSelector)first.Selector).GroupSizeParameter.Value.Value; //clonedVc1.Cross(clonedVc2, rand); todo ParameterConfigurationCrossover.Apply(rand, clonedVc1, clonedVc2, new DiscreteIntValueCrossover(), new AverageDoubleValueCrossover()); clonedVc1.Parameterize(first); Console.WriteLine(string.Format("PopSize: first: {0}, second: {1}, crossed: {2}", popSizeBefore, second.PopulationSize, first.PopulationSize)); Console.WriteLine(string.Format("MutRate: first: {0}, second: {1}, crossed: {2}", mutRateBefore, second.MutationProbability, first.MutationProbability)); Console.WriteLine(string.Format("MutOp: first: {0}, second: {1}, crossed: {2}", mutOpBefore, second.Mutator, first.Mutator)); Console.WriteLine(string.Format("SelOp: first: {0}, second: {1}, crossed: {2}", selOpBefore, second.Selector, first.Selector)); //Console.WriteLine(string.Format("GrSi: first: {0}, second: {1}, crossed: {2}", groupSizeBefore, ((TournamentSelector)second.Selector).GroupSizeParameter.Value, ((TournamentSelector)first.Selector).GroupSizeParameter.Value)); Console.WriteLine("---"); } Console.WriteLine("======================="); } private static void ConfigureMutationOperator(ParameterConfigurationTree algorithmVc) { var mutationOperator = algorithmVc.AlgorithmConfiguration.ParameterConfigurations.Where(x => x.Name == "Mutator").SingleOrDefault(); mutationOperator.Optimize = true; // uncheck multiMutator to avoid Michalewicz issue //var multiMutator = mutationOperator.ValueConfigurations.Where(x => x.ActualValue.Value != null && x.ActualValue.Value.ItemName.StartsWith("Multi")).SingleOrDefault(); //if (multiMutator != null) { // mutationOperator.ValueConfigurations.SetItemCheckedState(multiMutator, false); //} // add another normal - don't do this with 'new', because ActualNames will not be set correctly. It should be copied from an existing one // mutationOperator.ValueConfigurations.Add(new ParameterizedValueConfiguration(new NormalAllPositionsManipulator(), typeof(NormalAllPositionsManipulator)), true); } private static void ConfigureSelectionOperator(ParameterConfigurationTree algorithmVc, bool configureTournamenSize) { var selectionOperatorPc = algorithmVc.AlgorithmConfiguration.ParameterConfigurations.Where(x => x.Name == "Selector").SingleOrDefault(); selectionOperatorPc.Optimize = true; foreach (var vc in selectionOperatorPc.ValueConfigurations) { if (vc.ActualValue.ValueDataType == typeof(TournamentSelector)) { selectionOperatorPc.ValueConfigurations.SetItemCheckedState(vc, true); if (configureTournamenSize) { vc.Optimize = true; ConfigureTournamentGroupSize((ParameterizedValueConfiguration)vc); } } else if (vc.ActualValue.ValueDataType == typeof(RandomSelector)) { selectionOperatorPc.ValueConfigurations.SetItemCheckedState(vc, true); } else { selectionOperatorPc.ValueConfigurations.SetItemCheckedState(vc, true); } } } private static void ConfigureTournamentGroupSize(ParameterizedValueConfiguration tournamentVc) { var groupSizePc = tournamentVc.ParameterConfigurations.Where(x => x.ParameterName == "GroupSize").SingleOrDefault(); groupSizePc.Optimize = true; var groupSizeVc = (RangeValueConfiguration)groupSizePc.ValueConfigurations.First(); groupSizeVc.Optimize = true; groupSizeVc.RangeConstraint.LowerBound = new IntValue(0); groupSizeVc.RangeConstraint.UpperBound = new IntValue(10); groupSizeVc.RangeConstraint.StepSize = new IntValue(1); } private static void ConfigurePopulationSize(ParameterConfigurationTree algorithmVc, int lower, int upper, int stepsize) { var populationSizePc = algorithmVc.AlgorithmConfiguration.ParameterConfigurations.Where(x => x.Name == "PopulationSize").SingleOrDefault(); populationSizePc.Optimize = true; var populationSizeVc = (RangeValueConfiguration)populationSizePc.ValueConfigurations.First(); populationSizeVc.Optimize = true; populationSizeVc.RangeConstraint.LowerBound = new IntValue(lower); populationSizeVc.RangeConstraint.UpperBound = new IntValue(upper); populationSizeVc.RangeConstraint.StepSize = new IntValue(stepsize); } private static void ConfigureMutationRate(ParameterConfigurationTree algorithmVc, double lower, double upper, double stepsize) { var mutationRatePc = algorithmVc.AlgorithmConfiguration.ParameterConfigurations.Where(x => x.Name == "MutationProbability").SingleOrDefault(); mutationRatePc.Optimize = true; var mutationRateVc = (RangeValueConfiguration)mutationRatePc.ValueConfigurations.First(); mutationRateVc.Optimize = true; mutationRateVc.RangeConstraint.LowerBound = new PercentValue(lower); mutationRateVc.RangeConstraint.UpperBound = new PercentValue(upper); mutationRateVc.RangeConstraint.StepSize = new PercentValue(stepsize); } private static void ConfigureElites(ParameterConfigurationTree algorithmVc, int from, int to, int stepSize) { var elitesPc = algorithmVc.AlgorithmConfiguration.ParameterConfigurations.Where(x => x.Name == "Elites").SingleOrDefault(); elitesPc.Optimize = true; var elitesVc = (RangeValueConfiguration)elitesPc.ValueConfigurations.First(); elitesVc.Optimize = true; elitesVc.RangeConstraint.LowerBound = new IntValue(from); elitesVc.RangeConstraint.UpperBound = new IntValue(to); elitesVc.RangeConstraint.StepSize = new IntValue(stepSize); } private static void TestOptimization(EngineAlgorithm metaLevelAlgorithm) { string path = Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "Results"); if (!Directory.Exists(path)) Directory.CreateDirectory(path); string id = DateTime.Now.ToString("yyyy.MM.dd - HH;mm;ss,ffff"); string resultPath = Path.Combine(path, string.Format("{0} - Result.hl", id)); string outputPath = Path.Combine(path, string.Format("{0} - Console.txt", id)); ContentManager.Save((IStorableContent)metaLevelAlgorithm, resultPath + "-before.hl", true); using (var sw = new StreamWriter(outputPath)) { sw.AutoFlush = true; StringBuilder sb1 = new StringBuilder(); sb1.AppendFormat("Meta-PopulationSize: {0}\n", metaAlgorithmPopulationSize); sb1.AppendFormat("Meta-MaxGenerations: {0}\n", metaAlgorithmMaxGenerations); sb1.AppendFormat("Meta-Repetitions : {0}\n", metaProblemRepetitions); sb1.AppendFormat("Meta-MutProb : {0}\n", ((GeneticAlgorithm)metaLevelAlgorithm).MutationProbability.Value); sb1.AppendFormat("Meta-Seed : {0}\n", ((GeneticAlgorithm)metaLevelAlgorithm).Seed.Value); sb1.AppendFormat("Base-MaxGenerations: {0}\n", baseAlgorithmMaxGenerations); sb1.AppendLine("Problems:"); foreach (var prob in ((MetaOptimizationProblem)metaLevelAlgorithm.Problem).Problems) { sb1.Append(prob.Name); var sotf = prob as SingleObjectiveTestFunctionProblem; if (sotf != null) { sb1.AppendFormat(" {0}", sotf.ProblemSize.Value); } sb1.AppendLine(); } sw.WriteLine(sb1.ToString()); Console.WriteLine(sb1.ToString()); metaLevelAlgorithm.Stopped += new EventHandler(metaLevelAlgorithm_Stopped); metaLevelAlgorithm.Paused += new EventHandler(metaLevelAlgorithm_Paused); metaLevelAlgorithm.ExceptionOccurred += new EventHandler>(metaLevelAlgorithm_ExceptionOccurred); metaLevelAlgorithm.Start(); int i = 0; int currentGeneration = -1; do { Thread.Sleep(1000); if (metaLevelAlgorithm.Results.ContainsKey("Generations") && ((IntValue)metaLevelAlgorithm.Results["Generations"].Value).Value != currentGeneration) { while (metaLevelAlgorithm.Results.Count < 6) Thread.Sleep(1000); StringBuilder sb = new StringBuilder(); sb.AppendLine(DateTime.Now.ToLongTimeString()); sb.AppendLine("================================="); sb.AppendLine(metaLevelAlgorithm.ExecutionState.ToString()); ResultCollection rsClone = null; while (rsClone == null) { try { rsClone = (ResultCollection)metaLevelAlgorithm.Results.Clone(); } catch { } } foreach (var result in rsClone) { sb.AppendLine(result.ToString()); if (result.Name == "Population") { RunCollection rc = (RunCollection)result.Value; var orderedRuns = rc.OrderBy(x => x.Results["AverageQualityNormalized"]); //TableBuilder tb = new TableBuilder("QNorm", "Qualities"/*, "PoSi"*/ /*,"MutRa"*/ /*,"Eli", "SelOp",*/ /*"MutOp"*//*, "NrSelSubScopes"*/); //foreach (IRun run in orderedRuns) { // //string selector; // //if (run.Parameters["Selector"] is TournamentSelector) { // // selector = string.Format("{0} ({1})", run.Parameters["Selector"].ToString(), ((TournamentSelector)run.Parameters["Selector"]).GroupSizeParameter.Value.ToString()); // //} else { // // selector = string.Format("{0}", run.Parameters["Selector"].ToString()); // //} // tb.AppendRow( // ((DoubleValue)run.Results["AverageQualityNormalized"]).Value.ToString("#0.0000") // ,((DoubleArray)run.Results["RunsAverageQualities"]).ToString() // //,((IntValue)run.Parameters["PopulationSize"]).Value.ToString() // //,((DoubleValue)run.Parameters["MutationProbability"]).Value.ToString("0.0000") // //,((IntValue)run.Parameters["Elites"]).Value.ToString() // //,Shorten(selector, 20) // //,Shorten(run.Parameters.ContainsKey("Mutator") ? run.Parameters["Mutator"].ToString() : "null", 40) // //,((ISelector)run.Parameters["Selector"]).NumberOfSelectedSubScopesParameter.Value.ToString() // ); //} //sb.AppendLine(tb.ToString()); var tb = new TableBuilder("QNorm", "Qualities", "StdDevs", "Evaluations", "Parameters"); foreach (IRun run in orderedRuns) { tb.AppendRow( ((DoubleValue)run.Results["AverageQualityNormalized"]).Value.ToString("#0.0000") , ((DoubleArray)run.Results["RunsAverageQualities"]).ToString() , ((DoubleArray)run.Results["RunsQualityStandardDeviations"]).ToString() , ((DoubleArray)run.Results["RunsAverageEvaluatedSolutions"]).ToString() , run.Name ); } sb.AppendLine(tb.ToString()); } } // foreach //Console.Clear(); Console.WriteLine(sb.ToString()); sw.WriteLine(sb.ToString()); currentGeneration = ((IntValue)metaLevelAlgorithm.Results["Generations"].Value).Value; } // if //if (i % 30 == 0) GC.Collect(); i++; } while (metaLevelAlgorithm.ExecutionState != ExecutionState.Stopped); } Console.WriteLine(); Console.WriteLine("Storing..."); ContentManager.Save((IStorableContent)metaLevelAlgorithm, resultPath, true); Console.WriteLine("Finished"); } private static void metaLevelAlgorithm_ExceptionOccurred(object sender, EventArgs e) { Console.WriteLine("metaLevelAlgorithm_ExceptionOccurred"); Console.WriteLine(e.Value.ToString()); if (e.Value.InnerException != null) { Console.WriteLine(e.Value.InnerException.ToString()); } } private static void metaLevelAlgorithm_Paused(object sender, EventArgs e) { Console.WriteLine("metaLevelAlgorithm_Paused"); } private static void metaLevelAlgorithm_Stopped(object sender, EventArgs e) { Console.WriteLine("metaLevelAlgorithm_Stopped"); } private static void TestShorten() { int n = 8; Console.WriteLine(Shorten("1", n)); Console.WriteLine(Shorten("12", n)); Console.WriteLine(Shorten("123", n)); Console.WriteLine(Shorten("1234", n)); Console.WriteLine(Shorten("12345", n)); Console.WriteLine(Shorten("123456", n)); Console.WriteLine(Shorten("1234567", n)); Console.WriteLine(Shorten("12345678", n)); Console.WriteLine(Shorten("123456789", n)); Console.WriteLine(Shorten("1234567890", n)); Console.WriteLine(Shorten("12345678901", n)); } private static string Shorten(string s, int n) { string placeholder = ".."; if (s.Length <= n) return s; int len = n / 2 - placeholder.Length / 2; string start = s.Substring(0, len); string end = s.Substring(s.Length - len, len); return start + placeholder + end; } private static void TestIntSampling() { System.Random rand = new System.Random(); int lower = 10; int upper = 20; int stepsize = 1; for (int i = 0; i < 100; i++) { int val; do { val = rand.Next(lower / stepsize, upper / stepsize + 1) * stepsize; } while (val < lower || val > upper); Console.WriteLine(val); } } private static void TestDoubleSampling() { var random = new MersenneTwister(); double lower = 0; double upper = 1; double stepsize = 0.0000001; DoubleValueRange range = new DoubleValueRange(new DoubleValue(lower), new DoubleValue(upper), new DoubleValue(stepsize)); using (var sw = new StreamWriter("out-DoubleValue.txt")) { for (int i = 0; i < 10000; i++) { var val = range.GetRandomValue(random); Debug.Assert(val.Value >= lower && val.Value <= upper); sw.WriteLine(val); } } } private static IEnumerable GetValidValues(IValueParameter valueParameter) { return ApplicationManager.Manager.GetInstances(valueParameter.DataType).Select(x => (IItem)x).OrderBy(x => x.ItemName); } } public class Node { public string Name { get; set; } public int ActualValue { get; set; } public int[] PossibleValues { get; set; } public List ChildNodes { get; set; } public Node(string name) { this.Name = name; PossibleValues = new int[] { 1, 2, 3 }; ChildNodes = new List(); } public void Init() { this.ActualValue = PossibleValues.First(); foreach (var child in ChildNodes) { child.Init(); } } public override string ToString() { StringBuilder sb = new StringBuilder(); sb.Append(string.Format("{0}:{1}", this.Name, this.ActualValue)); if (this.ChildNodes.Count() > 0) { sb.Append(" ("); var lst = new List(); foreach (Node child in ChildNodes) { lst.Add(child.ToString()); } sb.Append(string.Join(", ", lst.ToArray())); sb.Append(")"); } return sb.ToString(); } } public class NodeEnumerator : IEnumerator { private Node node; private List enumerators; public NodeEnumerator(Node node) { this.node = node; this.enumerators = new List(); } public Node Current { get { return node; } } object IEnumerator.Current { get { return Current; } } public void Dispose() { } public bool MoveNext() { int i = 0; bool ok = false; while (!ok && i < enumerators.Count) { if (enumerators[i].MoveNext()) { ok = true; } else { i++; } } if (ok) { for (int k = i - 1; k >= 0; k--) { enumerators[k].Reset(); enumerators[k].MoveNext(); } } else { return false; } node.ActualValue = (int)enumerators[0].Current; return true; } public void Reset() { enumerators.Clear(); enumerators.Add(node.PossibleValues.GetEnumerator()); enumerators[0].Reset(); foreach (var child in node.ChildNodes) { var enumerator = new NodeEnumerator(child); enumerator.Reset(); enumerator.MoveNext(); enumerators.Add(enumerator); } } } class MyParameterizedItem : ParameterizedNamedItem { public MyParameterizedItem() { this.Parameters.Add(new ValueParameter("P1", new IntValue(1))); this.Parameters.Add(new ValueParameter("P2", new IntValue(2))); this.Parameters.Add(new ValueParameter("P3", new IntValue(3))); this.Parameters.Add(new ValueParameter("P4", new MyOtherParameterizedItem())); } protected MyParameterizedItem(MyParameterizedItem original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new MyParameterizedItem(this, cloner); } public override string ToString() { return string.Format("P1: {0}, P2: {1}, P3: {2}, P4: {3}", Parameters["P1"].ActualValue, Parameters["P2"].ActualValue, Parameters["P3"].ActualValue, Parameters["P4"].ActualValue); } } class MyOtherParameterizedItem : ParameterizedNamedItem { public MyOtherParameterizedItem() { this.Parameters.Add(new ValueParameter("PP1", new IntValue(1))); this.Parameters.Add(new ValueParameter("PP2", new IntValue(2))); this.Parameters.Add(new ValueParameter("PP3", new IntValue(3))); } protected MyOtherParameterizedItem(MyOtherParameterizedItem original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new MyOtherParameterizedItem(this, cloner); } public override string ToString() { return string.Format("PP1: {0}, PP2: {1}, PP3: {2}", Parameters["PP1"].ActualValue, Parameters["PP2"].ActualValue, Parameters["PP3"].ActualValue); } } }