using System; using System.Collections; using System.Collections.Generic; using System.Diagnostics; using System.IO; using System.Linq; using System.Reflection; using System.Text; using System.Threading; using System.Threading.Tasks; using HeuristicLab.Algorithms.EvolutionStrategy; using HeuristicLab.Algorithms.GeneticAlgorithm; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.RealVectorEncoding; using HeuristicLab.Hive.ExperimentManager; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.PluginInfrastructure; using HeuristicLab.PluginInfrastructure.Manager; using HeuristicLab.Problems.DataAnalysis.Symbolic; using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression; using HeuristicLab.Problems.MetaOptimization; using HeuristicLab.Problems.TestFunctions; using HeuristicLab.Random; using HeuristicLab.Selection; namespace HeuristicLab.MetaOptimization.Test { class Program { static void Main(string[] args) { //PluginLoader.pluginAssemblies.Any(); PluginManager pm = new PluginManager(Path.GetDirectoryName(Assembly.GetExecutingAssembly().Location)); pm.DiscoverAndCheckPlugins(); pm.Run(pm.Applications.Where(x => x.Name == "TestApp").SingleOrDefault()); } } [Plugin("TestPlugin", "1.0.0.0")] [PluginFile("HeuristicLab.MetaOptimization.Test.exe", PluginFileType.Assembly)] public class TestPlugin : PluginBase { } [Application("TestApp")] public class TestApp : ApplicationBase { //private static int metaAlgorithmPopulationSize = 50; //private static int metaAlgorithmMaxGenerations = 30; //private static int metaProblemRepetitions = 5; //private static int baseAlgorithmMaxGenerations = 1000; private static int metaAlgorithmPopulationSize = 10; private static int metaAlgorithmMaxGenerations = 15; private static int metaProblemRepetitions = 3; private static int baseAlgorithmMaxGenerations = 10; private static double mutationProbability = 0.10; public override void Run() { ContentManager.Initialize(new PersistenceContentManager()); //TestTableBuilder(); //TestShorten(); //TestSimilarities(); return; //TestIntSampling(); //TestDoubleSampling(); return; //TestTypeDiscovery(); //TestOperators(); //TestCombinations(); //TestCombinations2(); //TestCombinations3(); //TestEnumeratorCollectionEnumerator(); //TestCombinations4(); return; //TestAlgorithmPerformanceIssue(); return; //TestWaitAny(); //TestExecutionTimeUpdateInvervalPerformance(); //TestMemoryConsumption(); //TestNormalCrossover(); //TestItemDictionary(); //TestSymbolicDataAnalysisGrammar(); return; MetaOptimizationProblem metaOptimizationProblem = new MetaOptimizationProblem(); metaOptimizationProblem.Repetitions = new IntValue(metaProblemRepetitions); GeneticAlgorithm metaLevelAlgorithm = GetMetaGA(metaOptimizationProblem); //GeneticAlgorithm metaLevelAlgorithm = GetParallelMetaGA(metaOptimizationProblem); //GeneticAlgorithm metaLevelAlgorithm = GetHiveParallelMetaGA(metaOptimizationProblem); //EvolutionStrategy metaLevelAlgorithm = GetMetaES(metaOptimizationProblem); var algorithmVc = SetupGAAlgorithm(typeof(GeneticAlgorithm), metaOptimizationProblem); //TestToString(algorithmVc); //Console.WriteLine("Press enter to start"); //Console.ReadLine(); TestConfiguration(algorithmVc, typeof(GeneticAlgorithm), metaOptimizationProblem.Problems.First()); Console.WriteLine("Press enter to start"); Console.ReadLine(); TestOptimization(metaLevelAlgorithm); //TestMemoryLeak(metaLevelAlgorithm); Console.ReadLine(); } private void TestSymbolicDataAnalysisGrammar() { var random = new MersenneTwister(); var grammar1 = new TypeCoherentExpressionGrammar(); var grammar2 = new TypeCoherentExpressionGrammar(); grammar2.Symbols.Single(x => x.Name == "Addition").InitialFrequency = 0.5; Console.WriteLine("========== Grammar1: =========="); PrintGrammar(grammar1); Console.WriteLine("========== Grammar2: =========="); PrintGrammar(grammar2); RealVector v1 = GetInitialFrequenciesAsRealVector(grammar1); RealVector v2 = GetInitialFrequenciesAsRealVector(grammar2); for (int i = 0; i < 10; i++) { RealVector v3 = DiscreteCrossover.Apply(random, new ItemArray(new List { v1, v2 })); var grammar3 = new TypeCoherentExpressionGrammar(); SetInitialFrequenciesFromRealVector(grammar3, v3); Console.WriteLine("\n========== Crossed: =========="); PrintGrammar(grammar3); } } private static void PrintGrammar(TypeCoherentExpressionGrammar grammar) { foreach (var symbol in grammar.Symbols) { Console.WriteLine("{0} ({1})", symbol.ToString(), symbol.InitialFrequency); } } private static RealVector GetInitialFrequenciesAsRealVector(TypeCoherentExpressionGrammar grammar) { var vector = new RealVector(grammar.Symbols.Count()); for (int i = 0; i < grammar.Symbols.Count(); i++) { vector[i] = grammar.Symbols.ElementAt(i).InitialFrequency; } return vector; } private static void SetInitialFrequenciesFromRealVector(TypeCoherentExpressionGrammar grammar, RealVector vector) { for (int i = 0; i < grammar.Symbols.Count(); i++) { grammar.Symbols.ElementAt(i).InitialFrequency = vector[i]; } } private static void TestSimilarities() { Console.WriteLine("\nDoubleRange:"); var doubleRange = new DoubleValueRange(new DoubleValue(0), new DoubleValue(10), new DoubleValue(1)); var a = new DoubleValue(5.0); for (double d = 0; d < 10; d += 0.1) { var similarity = doubleRange.CalculateSimilarity(a, new DoubleValue(d)); Console.WriteLine("{0}: {1}", d, similarity); } Console.WriteLine("\nPecentRange:"); var percentRange = new PercentValueRange(new PercentValue(0), new PercentValue(1), new PercentValue(1)); var b = new PercentValue(0.05); for (double d = 0; d < 1; d += 0.01) { var similarity = percentRange.CalculateSimilarity(b, new PercentValue(d)); Console.WriteLine("{0}: {1}", d, similarity); } Console.WriteLine("\nIntRange:"); var intRange = new IntValueRange(new IntValue(50), new IntValue(100), new IntValue(1)); var c = new IntValue(90); for (int i = 0; i < 100; i++) { var similarity = intRange.CalculateSimilarity(c, new IntValue(i)); Console.WriteLine("{0}: {1}", i, similarity); } Console.WriteLine("\nValueConfigurations:"); var vc1 = SetupGAAlgorithm(typeof(GeneticAlgorithm), new MetaOptimizationProblem()); vc1.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "Elites").Optimize = true; vc1.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "PopulationSize").Optimize = true; vc1.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MutationProbability").Optimize = true; vc1.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "Selector").Optimize = true; var vc2 = (ParameterConfigurationTree)vc1.Clone(); Console.WriteLine("Assert(1): {0}", vc1.CalculateSimilarity(vc2)); ((IntValue)vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "PopulationSize").ValueConfigurations[0].ActualValue.Value).Value = 75; Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2)); ((PercentValue)vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MutationProbability").ValueConfigurations[0].ActualValue.Value).Value = 0.15; Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2)); ((PercentValue)vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MutationProbability").ValueConfigurations[0].ActualValue.Value).Value = 0.25; Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2)); ((PercentValue)vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MutationProbability").ValueConfigurations[0].ActualValue.Value).Value = 0.35; Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2)); ((PercentValue)vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MutationProbability").ValueConfigurations[0].ActualValue.Value).Value = 0.45; Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2)); ((PercentValue)vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MutationProbability").ValueConfigurations[0].ActualValue.Value).Value = 0.55; Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2)); vc2.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "Selector").ActualValueConfigurationIndex = 3; Console.WriteLine("{0}", vc1.CalculateSimilarity(vc2)); var random = new Random.MersenneTwister(0); for (int i = 0; i < 10; i++) { vc2.Randomize(random); Console.WriteLine("Randomized: {0}", vc1.CalculateSimilarity(vc2)); } } private static void TestItemDictionary() { var dict = new ItemDictionary(); dict.Add(new StringValue("a"), new RunCollection()); dict.Add(new StringValue("b"), new RunCollection()); dict.Add(new StringValue("c"), new RunCollection()); Console.WriteLine(dict.ContainsKey(new StringValue("a"))); Console.WriteLine(dict.Count(x => x.Key.Value == "a")); } private static void TestNormalCrossover() { var random = new MersenneTwister(); double d1 = 0.5; double d2 = 0.6; var doubleRange = new DoubleValueRange(new DoubleValue(0.0), new DoubleValue(1.0), new DoubleValue(0.01)); using (var sw = new StreamWriter("normalCrossover-DoubleValue.txt")) { for (int i = 0; i < 10000; i++) { sw.WriteLine(NormalDoubleValueCrossover.ApplyStatic(random, new DoubleValue(d1), new DoubleValue(d2), doubleRange)); } } int i1 = 180; int i2 = 160; var intRange = new IntValueRange(new IntValue(100), new IntValue(200), new IntValue(1)); using (var sw = new StreamWriter("normalCrossover-IntValue.txt")) { for (int i = 0; i < 10000; i++) { sw.WriteLine(NormalIntValueCrossover.ApplyStatic(random, new IntValue(i1), new IntValue(i2), intRange)); } } } private static void TestMemoryConsumption() { Queue latestExecutionTimes = new Queue(); GeneticAlgorithm ga = new GeneticAlgorithm(); ga.PopulationSize.Value = 3; ga.MaximumGenerations.Value = 1; ga.Engine = new SequentialEngine.SequentialEngine(); throw new NotImplementedException("TODO: set ga properties correctly"); MetaOptimizationProblem metaOptimizationProblem = new MetaOptimizationProblem(); metaOptimizationProblem.Repetitions = new IntValue(metaProblemRepetitions); GeneticAlgorithm metaLevelAlgorithm = GetMetaGA(metaOptimizationProblem); ParameterConfigurationTree algorithmVc = SetupGAAlgorithm(typeof(GeneticAlgorithm), metaOptimizationProblem); Stopwatch sw = new Stopwatch(); var algs = new List(); for (int i = 0; i < 10000; i++) { sw.Start(); GeneticAlgorithm clonedGa = (GeneticAlgorithm)ga.Clone(); clonedGa.Name = "CLONED GA"; algorithmVc.Parameterize(clonedGa); algs.Add(clonedGa); sw.Reset(); ContentManager.Save((IStorableContent)metaLevelAlgorithm, "alg_" + i + ".hl", true); Console.WriteLine("Cloned alg #{0}", i); } } private static void TestExecutionTimeUpdateInvervalPerformance() { TableBuilder tb = new TableBuilder("Tasks", "Interval", "TotalExecutionTime", "AvgExecutionTime", "TimeElapsed", "TotalTimeElapsed", "Speedup", "ExecutionTimeChangedCount", "RealExecutionTimeUpdate(ms)"); int tasks = 4; int repetitions = 3; // warmup RepeatExecuteParallel(3, 1, 1, tb); tb.AppendRow("--", "--", "--", "--", "--", "--", "--", "--", "--"); RepeatExecuteParallel(repetitions, tasks, 1, tb); RepeatExecuteParallel(repetitions, tasks, 2.5, tb); RepeatExecuteParallel(repetitions, tasks, 5, tb); RepeatExecuteParallel(repetitions, tasks, 10, tb); RepeatExecuteParallel(repetitions, tasks, 25, tb); RepeatExecuteParallel(repetitions, tasks, 50, tb); RepeatExecuteParallel(repetitions, tasks, 100, tb); RepeatExecuteParallel(repetitions, tasks, 250, tb); RepeatExecuteParallel(repetitions, tasks, 500, tb); RepeatExecuteParallel(repetitions, tasks, 1000, tb); RepeatExecuteParallel(repetitions, tasks, 2500, tb); RepeatExecuteParallel(repetitions, tasks, 5000, tb); using (var sw = new StreamWriter("TestExecutionTimeUpdateInvervalPerformance.txt")) { sw.Write(tb.ToString()); } } private static GeneticAlgorithm CreateGA() { GeneticAlgorithm ga = new GeneticAlgorithm(); ga.Problem = new SingleObjectiveTestFunctionProblem() { ProblemSize = new IntValue(250) }; ga.Engine = new SequentialEngine.SequentialEngine(); ga.SetSeedRandomly.Value = false; ga.Seed.Value = 0; return ga; } private static void RepeatExecuteParallel(int repetitions, int tasks, double executionTimeUpdateIntervalMs, TableBuilder tb) { for (int i = 0; i < repetitions; i++) { ExecuteParallel(tasks, executionTimeUpdateIntervalMs, tb); Console.Clear(); Console.WriteLine(tb.ToString()); } } private static void ExecuteParallel(int taskCount, double executionTimeUpdateIntervalMs, TableBuilder tb) { Task[] tasks = new Task[taskCount]; EngineAlgorithm[] algs = new EngineAlgorithm[taskCount]; for (int i = 0; i < taskCount; i++) { GeneticAlgorithm alg = CreateGA(); //((Engine)alg.Engine).ExecutionTimeUpdateInterval = TimeSpan.FromMilliseconds(executionTimeUpdateIntervalMs); algs[i] = alg; } Console.WriteLine("Creating algs finished."); for (int i = 0; i < taskCount; i++) { tasks[i] = new Task((alg) => { Console.WriteLine("Task {0} started.", Task.CurrentId); Stopwatch swx = new Stopwatch(); swx.Start(); ((EngineAlgorithm)alg).ExecutionTimeChanged += new EventHandler(Program_ExecutionTimeChanged); ((EngineAlgorithm)alg).StartSync(); ((EngineAlgorithm)alg).ExecutionTimeChanged -= new EventHandler(Program_ExecutionTimeChanged); swx.Stop(); Console.WriteLine("Task {0} finished.", Task.CurrentId); return swx.Elapsed; }, algs[i]); } Console.WriteLine("Creating tasks finished."); counter = 0; Stopwatch sw = new Stopwatch(); sw.Start(); foreach (var task in tasks) task.Start(); Task.WaitAll(tasks); sw.Stop(); if (!algs.All(alg => alg.ExecutionState == ExecutionState.Stopped)) throw new Exception("Not all algs stopped properly"); if (!algs.All(alg => ((DoubleValue)alg.Results["BestQuality"].Value).Value == ((DoubleValue)algs.First().Results["BestQuality"].Value).Value)) throw new Exception("Not all algs have the same resutls"); if (tb != null) { double totalExecutionTimeMilliseconds = algs.Select(x => x.ExecutionTime.TotalMilliseconds).Sum(); double totalMilliseconds = tasks.Select(t => t.Result.TotalMilliseconds).Sum(); tb.AppendRow( taskCount.ToString(), executionTimeUpdateIntervalMs.ToString(), TimeSpan.FromMilliseconds(totalExecutionTimeMilliseconds).ToString(), TimeSpan.FromMilliseconds(totalExecutionTimeMilliseconds / taskCount).ToString(), sw.Elapsed.ToString(), TimeSpan.FromMilliseconds(totalMilliseconds).ToString(), (totalMilliseconds / sw.ElapsedMilliseconds).ToString("0.00"), counter.ToString(), (totalExecutionTimeMilliseconds / counter).ToString("0.00")); } tasks = null; algs = null; GC.Collect(); Console.WriteLine("Test finished."); } private static int counter = 0; static void Program_ExecutionTimeChanged(object sender, EventArgs e) { System.Threading.Interlocked.Increment(ref counter); } private static void TestWaitAny() { System.Random rand = new System.Random(); var tasks = new List>(); for (int i = 0; i < 10; i++) { tasks.Add(Task.Factory.StartNew((x) => { int sleep = ((int)x - 10) * -1000; Console.WriteLine("sleeping: {0} ms", sleep); Thread.Sleep(0); // make context switch Thread.Sleep(sleep); return (int)x * (int)x; }, i)); } // --> WaitAll processes tasks lazy but in order. Task.WaitAll(); foreach (var task in tasks) { Console.WriteLine(task.Result); } // -> WaitAny processes any finished task first. but the finished task needs to be removed from list in order to process all tasks //for (int i = 0; i < 10; i++) { // var tasksArray = tasks.ToArray(); // var task = tasksArray[Task.WaitAny(tasksArray)]; // Console.WriteLine(task.Result); // tasks.Remove(task); //} Console.WriteLine("Finished TestWaitAny"); } private static void TestAlgorithmPerformanceIssue() { Queue latestExecutionTimes = new Queue(); int size = 10; var random = new Random.MersenneTwister(0); GeneticAlgorithm ga = new GeneticAlgorithm(); ga.PopulationSize.Value = 3; ga.MaximumGenerations.Value = 1; ga.Engine = new SequentialEngine.SequentialEngine(); ga.Problem = new SingleObjectiveTestFunctionProblem(); MetaOptimizationProblem metaOptimizationProblem = new MetaOptimizationProblem(); //metaOptimizationProblem.Repetitions = new IntValue(metaProblemRepetitions); GeneticAlgorithm metaLevelAlgorithm = GetMetaGA(metaOptimizationProblem); ParameterConfigurationTree algorithmVc = SetupGAAlgorithm(typeof(GeneticAlgorithm), metaOptimizationProblem); algorithmVc.Randomize(random); Stopwatch sw = new Stopwatch(); var algs = new Queue(); // keep them in memory // -> BINGO! -> .NET cannot hold more than 16 algorithms with their ThreadLocal objects efficiently, // so if they are kept in memory, runtime at the 17. execution drops significantly // because creating ThreadLocal takes all the runtime. // when the algs are not stored in a list however this effect does not occur. for (int i = 0; i < 1000; i++) { GeneticAlgorithm clonedGa = (GeneticAlgorithm)ga.Clone(); clonedGa.Name = "CLONED GA"; //algorithmVc.Randomize(random); //algorithmVc.Parameterize(clonedGa); clonedGa.Prepare(true); sw.Start(); algs.Enqueue(clonedGa); if (algs.Count > 24) algs.Dequeue(); clonedGa.StartSync(); sw.Stop(); latestExecutionTimes.Enqueue(sw.Elapsed); Console.WriteLine("{0}: {1} ({2})", i, sw.Elapsed, latestExecutionTimes.Count > size ? TimeSpan.FromMilliseconds(latestExecutionTimes.Average(t => t.TotalMilliseconds)).ToString() : "-"); if (latestExecutionTimes.Count > size) { latestExecutionTimes.Dequeue(); } sw.Reset(); } } private static void TestTableBuilder() { TableBuilder tb = new TableBuilder("column_1", "col2", "col3"); tb.AppendRow("1", "humpi", "0.23124"); tb.AppendRow("2", "sf", "0.23124"); tb.AppendRow("5", "humpi dampti", "0.224"); tb.AppendRow("10", "egon asdf", "0.4"); tb.AppendRow("15", "MichaelizcMultiVfds", "0.23124564"); Console.WriteLine(tb.ToString()); } private static void TestToInfoString(IValueConfiguration algorithmVc) { var random = new MersenneTwister(); Console.WriteLine(algorithmVc.ParameterInfoString); algorithmVc.Randomize(random); Console.WriteLine(algorithmVc.ParameterInfoString); algorithmVc.Randomize(random); Console.WriteLine(algorithmVc.ParameterInfoString); algorithmVc.Randomize(random); } private static void TestCombinations() { Console.WriteLine("IntRange 3-18:3"); IntValueRange intRange = new IntValueRange(new IntValue(3), new IntValue(18), new IntValue(3)); foreach (var val in intRange.GetCombinations()) { Console.WriteLine(val); } Console.WriteLine("DoubleRange 1.0-2.5:0.5"); var dblRange = new DoubleValueRange(new DoubleValue(0.7), new DoubleValue(2.8), new DoubleValue(0.5)); foreach (var val in dblRange.GetCombinations()) { Console.WriteLine(val); } Console.WriteLine("PercentRange 33%-66%:33%"); var pctRange = new PercentValueRange(new PercentValue(0.32), new PercentValue(0.98), new PercentValue(0.33)); foreach (var val in pctRange.GetCombinations()) { Console.WriteLine(val); } } private static void TestCombinations3() { Node root = new Node("root"); root.ChildNodes.Add(new Node("root.n1")); root.ChildNodes.Add(new Node("root.n2")); Node n3 = new Node("root.n3"); n3.ChildNodes.Add(new Node("root.n3.n1")); n3.ChildNodes.Add(new Node("root.n3.n2")); root.ChildNodes.Add(n3); Console.WriteLine(root.ToString()); Console.WriteLine("--"); int cnt = 0; var enumerator = new NodeEnumerator(root); enumerator.Reset(); while (enumerator.MoveNext()) { Console.WriteLine(enumerator.Current.ToString()); cnt++; } Console.WriteLine("count: " + cnt); } private static void TestEnumeratorCollectionEnumerator() { IEnumerable list1 = new int[] { 1, 2, 3, 4, 5 }; IEnumerable list2 = new int[] { 10, 20, 30 }; IEnumerable list3 = new int[] { 300, 400, 500 }; var enumerators = new List(); EnumeratorCollectionEnumerator enu = new EnumeratorCollectionEnumerator(); enu.AddEnumerator(list1.GetEnumerator()); enu.AddEnumerator(list2.GetEnumerator()); enu.AddEnumerator(list3.GetEnumerator()); enu.Reset(); while (enu.MoveNext()) { Console.WriteLine(enu.Current); } } private static void TestCombinations4() { GeneticAlgorithm ga = new GeneticAlgorithm(); ga.Problem = new SingleObjectiveTestFunctionProblem(); ga.Engine = new SequentialEngine.SequentialEngine(); ParameterConfigurationTree vc = new ParameterConfigurationTree(ga, new SingleObjectiveTestFunctionProblem()); ConfigurePopulationSize(vc, 20, 100, 20); //ConfigureMutationRate(vc, 0.10, 0.60, 0.10); ConfigureMutationOperator(vc); //ConfigureSelectionOperator(vc, true); int count = 0; IEnumerator enumerator = new ParameterCombinationsEnumerator(vc); enumerator.Reset(); while (enumerator.MoveNext()) { var current = (IValueConfiguration)enumerator.Current; count++; Console.WriteLine(current.ParameterInfoString); } Console.WriteLine("You are about to create {0} algorithms.", count); Experiment experiment = vc.GenerateExperiment(ga); //foreach (var opt in experiment.Optimizers) { // Console.WriteLine(opt.Name); //} experiment.Prepare(); experiment.Start(); while (experiment.ExecutionState != ExecutionState.Stopped) { Thread.Sleep(500); } } private static void TestOperators() { IRandom random = new MersenneTwister(); var doubleRange = new DoubleValueRange(new DoubleValue(0), new DoubleValue(100), new DoubleValue(0.1)); using (var sw = new StreamWriter("out-DoubleValue.txt")) { for (int i = 0; i < 10000; i++) { var val = new DoubleValue(90); NormalDoubleValueManipulator.ApplyStatic(random, val, doubleRange); sw.WriteLine(val); } } var percentRange = new PercentValueRange(new PercentValue(0), new PercentValue(1), new PercentValue(0.001)); using (var sw = new StreamWriter("out-PercentValue.txt")) { for (int i = 0; i < 10000; i++) { var val = new PercentValue(0.5); NormalDoubleValueManipulator.ApplyStatic(random, val, percentRange.AsDoubleValueRange()); sw.WriteLine(val); } } var intRange = new IntValueRange(new IntValue(0), new IntValue(100), new IntValue(1)); using (var sw = new StreamWriter("out-IntValue.txt")) { for (int i = 0; i < 10000; i++) { var val = new IntValue(50); UniformIntValueManipulator.ApplyStatic(random, val, intRange); sw.WriteLine(val); } } Console.ReadLine(); } private static void TestTypeDiscovery() { PluginLoader.pluginAssemblies.Any(); var items = ApplicationManager.Manager.GetInstances(typeof(DoubleArray)).ToArray(); foreach (var item in items) { Console.WriteLine(item.ToString()); } } private static void TestMemoryLeak(GeneticAlgorithm metaLevelAlgorithm) { IValueConfiguration algorithmVc = ((MetaOptimizationProblem)metaLevelAlgorithm.Problem).ParameterConfigurationTree; Console.WriteLine("Starting Memory Test..."); Console.ReadLine(); var clones = new List(); for (int i = 0; i < 1000; i++) { var clone = algorithmVc.Clone(); clones.Add(clone); } Console.WriteLine("Finished. Now GC..."); Console.ReadLine(); GC.Collect(); Console.WriteLine("Finished!"); Console.ReadLine(); } private static GeneticAlgorithm GetMetaGA(MetaOptimizationProblem metaOptimizationProblem) { GeneticAlgorithm metaLevelAlgorithm = new GeneticAlgorithm(); metaLevelAlgorithm.PopulationSize.Value = metaAlgorithmPopulationSize; metaLevelAlgorithm.MaximumGenerations.Value = metaAlgorithmMaxGenerations; metaLevelAlgorithm.Problem = metaOptimizationProblem; metaLevelAlgorithm.Engine = new SequentialEngine.SequentialEngine(); metaLevelAlgorithm.Mutator = ((OptionalConstrainedValueParameter)((IAlgorithm)metaLevelAlgorithm).Parameters["Mutator"]).ValidValues.Where(x => x.GetType() == typeof(ParameterConfigurationOnePositionsManipulator)).Single(); //metaLevelAlgorithm.Mutator = ((OptionalConstrainedValueParameter)((IAlgorithm)metaLevelAlgorithm).Parameters["Mutator"]).ValidValues.Where(x => x.GetType() == typeof(ParameterConfigurationAllPositionsManipulator)).Single(); metaLevelAlgorithm.MutationProbability.Value = mutationProbability; //metaLevelAlgorithm.Selector = ((OptionalConstrainedValueParameter)((IAlgorithm)metaLevelAlgorithm).Parameters["Selector"]).ValidValues.Where(x => x.GetType() == typeof(LinearRankSelector)).Single(); //metaLevelAlgorithm.Selector = ((OptionalConstrainedValueParameter)((IAlgorithm)metaLevelAlgorithm).Parameters["Selector"]).ValidValues.Where(x => x.GetType() == typeof(TournamentSelector)).Single(); //metaLevelAlgorithm.Selector = ((OptionalConstrainedValueParameter)((IAlgorithm)metaLevelAlgorithm).Parameters["Selector"]).ValidValues.Where(x => x.GetType() == typeof(GenderSpecificSelector)).Single(); //metaLevelAlgorithm.Selector = ((OptionalConstrainedValueParameter)((IAlgorithm)metaLevelAlgorithm).Parameters["Selector"]).ValidValues.Where(x => x.GetType() == typeof(BestSelector)).Single(); metaLevelAlgorithm.Selector = ((OptionalConstrainedValueParameter)((IAlgorithm)metaLevelAlgorithm).Parameters["Selector"]).ValidValues.Where(x => x.GetType() == typeof(ProportionalSelector)).Single(); return metaLevelAlgorithm; } private static GeneticAlgorithm GetParallelMetaGA(MetaOptimizationProblem metaOptimizationProblem) { GeneticAlgorithm metaLevelAlgorithm = GetMetaGA(metaOptimizationProblem); metaLevelAlgorithm.Engine = new ParallelEngine.ParallelEngine(); return metaLevelAlgorithm; } private static GeneticAlgorithm GetHiveParallelMetaGA(MetaOptimizationProblem metaOptimizationProblem) { GeneticAlgorithm metaLevelAlgorithm = GetParallelMetaGA(metaOptimizationProblem); metaLevelAlgorithm.Engine = new HiveEngine.HiveEngine(); ServiceLocator.Instance.ClientFacadePool.UserName = "cneumuel"; ServiceLocator.Instance.ClientFacadePool.Password = "cneumuel"; ServiceLocator.Instance.StreamedClientFacadePool.UserName = "cneumuel"; ServiceLocator.Instance.StreamedClientFacadePool.Password = "cneumuel"; return metaLevelAlgorithm; } private static EvolutionStrategy GetMetaES(MetaOptimizationProblem metaOptimizationProblem) { EvolutionStrategy metaLevelAlgorithm = new EvolutionStrategy(); metaLevelAlgorithm.PopulationSize.Value = metaAlgorithmPopulationSize; metaLevelAlgorithm.MaximumGenerations.Value = metaAlgorithmMaxGenerations; metaLevelAlgorithm.Problem = metaOptimizationProblem; metaLevelAlgorithm.Engine = new SequentialEngine.SequentialEngine(); metaLevelAlgorithm.Mutator = ((OptionalConstrainedValueParameter)((IAlgorithm)metaLevelAlgorithm).Parameters["Mutator"]).ValidValues.Last(); return metaLevelAlgorithm; } private static ParameterConfigurationTree SetupGAAlgorithm(Type baseLevelAlgorithmType, MetaOptimizationProblem metaOptimizationProblem) { metaOptimizationProblem.AlgorithmType.Value = baseLevelAlgorithmType; //metaOptimizationProblem.Problems.Clear(); //metaOptimizationProblem.ProblemType.Value = typeof(SingleObjectiveTestFunctionProblem); //metaOptimizationProblem.Problems.Add(new HeuristicLab.Problems.TestFunctions.SingleObjectiveTestFunctionProblem() { // Evaluator = new GriewankEvaluator(), // ProblemSize = new IntValue(2) //}); //metaOptimizationProblem.Problems.Add(new HeuristicLab.Problems.TestFunctions.SingleObjectiveTestFunctionProblem() { // Evaluator = new GriewankEvaluator(), // ProblemSize = new IntValue(20) //}); //metaOptimizationProblem.Problems.Add(new HeuristicLab.Problems.TestFunctions.SingleObjectiveTestFunctionProblem() { // Evaluator = new GriewankEvaluator(), // ProblemSize = new IntValue(500) //}); metaOptimizationProblem.ProblemType.Value = typeof(SymbolicRegressionSingleObjectiveProblem); ParameterConfigurationTree algorithmVc = metaOptimizationProblem.ParameterConfigurationTree; ((IntValue)algorithmVc.AlgorithmConfiguration.ParameterConfigurations.Single(x => x.Name == "MaximumGenerations").ActualValue.Value).Value = baseAlgorithmMaxGenerations; //ConfigurePopulationSize(algorithmVc, 15, 20, 1); ConfigureMutationRate(algorithmVc, 0.0, 1.0, 0.01); ConfigureMutationOperator(algorithmVc); //ConfigureElites(algorithmVc, 0, 8, 1); //ConfigureSelectionOperator(algorithmVc, true); ConfigureSymbolicExpressionGrammar(algorithmVc); return algorithmVc; } private static void ConfigureSymbolicExpressionGrammar(ParameterConfigurationTree vc) { var pc = vc.ProblemConfiguration.ParameterConfigurations.Single(x => x.Name == "SymbolicExpressionTreeGrammar"); pc.Optimize = true; SymbolicExpressionGrammarValueConfiguration symbolicExpressionGrammarVc = null; foreach (var valconf in pc.ValueConfigurations) { if (valconf.ActualValue.Value.ItemName != "TypeCoherentExpressionGrammar") { pc.ValueConfigurations.SetItemCheckedState(valconf, false); } else { symbolicExpressionGrammarVc = valconf as SymbolicExpressionGrammarValueConfiguration; } } symbolicExpressionGrammarVc.Optimize = true; var additionPc = symbolicExpressionGrammarVc.ParameterConfigurations.Single(x => x.Name == "Addition"); additionPc.Optimize = true; var initialFrequencyVc = ((ParameterizedValueConfiguration)additionPc.ValueConfigurations.First()).ParameterConfigurations.Single(x => x.Name == "InitialFrequency"); initialFrequencyVc.Optimize = true; } private static void TestConfiguration(ParameterConfigurationTree algorithmVc, Type baseLevelAlgorithmType, IProblem problem) { IRandom rand = new FastRandom(0); var baseLevelAlgorithm = (GeneticAlgorithm)MetaOptimizationUtil.CreateParameterizedAlgorithmInstance(algorithmVc, baseLevelAlgorithmType, problem); // set random values for (int i = 0; i < 10; i++) { var clonedVc = (ParameterConfigurationTree)algorithmVc.Clone(); GeneticAlgorithm newAlg = (GeneticAlgorithm)baseLevelAlgorithm.Clone(); clonedVc.Randomize(rand); clonedVc.Parameterize(newAlg); Console.WriteLine(string.Format("PopSize: original: {0}, randomized: {1}", baseLevelAlgorithm.PopulationSize, newAlg.PopulationSize)); Console.WriteLine(string.Format("MutRate: original: {0}, randomized: {1}", baseLevelAlgorithm.MutationProbability, newAlg.MutationProbability)); Console.WriteLine(string.Format("MutOp: original: {0}, randomized: {1}", baseLevelAlgorithm.Mutator, newAlg.Mutator)); Console.WriteLine(string.Format("SelOp: original: {0}, randomized: {1}", baseLevelAlgorithm.Selector, newAlg.Selector)); //Console.WriteLine(string.Format("GrSi: original: {0}, randomized: {1}", "?", ((TournamentSelector)newAlg.Selector).GroupSizeParameter.Value)); Console.WriteLine("---"); } Console.WriteLine("======================="); algorithmVc.Randomize(rand); algorithmVc.Parameterize(baseLevelAlgorithm); // mutate for (int i = 0; i < 10; i++) { var clonedVc = (ParameterConfigurationTree)algorithmVc.Clone(); GeneticAlgorithm newAlg = (GeneticAlgorithm)baseLevelAlgorithm.Clone(); ParameterConfigurationManipulator.Apply(rand, clonedVc, new UniformIntValueManipulator(), new NormalDoubleValueManipulator()); clonedVc.Parameterize(newAlg); Console.WriteLine(string.Format("PopSize: original: {0}, mutated: {1}", baseLevelAlgorithm.PopulationSize, newAlg.PopulationSize)); Console.WriteLine(string.Format("MutRate: original: {0}, mutated: {1}", baseLevelAlgorithm.MutationProbability, newAlg.MutationProbability)); Console.WriteLine(string.Format("MutOp: original: {0}, mutated: {1}", baseLevelAlgorithm.Mutator, newAlg.Mutator)); Console.WriteLine(string.Format("SelOp: original: {0}, mutated: {1}", baseLevelAlgorithm.Selector, newAlg.Selector)); //Console.WriteLine(string.Format("GrSi: original: {0}, mutated: {1}", ((TournamentSelector)baseLevelAlgorithm.Selector).GroupSizeParameter.Value, ((TournamentSelector)newAlg.Selector).GroupSizeParameter.Value)); Console.WriteLine("---"); } Console.WriteLine("======================="); // cross for (int i = 0; i < 10; i++) { var clonedVc1 = (ParameterConfigurationTree)algorithmVc.Clone(); var clonedVc2 = (ParameterConfigurationTree)algorithmVc.Clone(); GeneticAlgorithm first = (GeneticAlgorithm)baseLevelAlgorithm.Clone(); GeneticAlgorithm second = (GeneticAlgorithm)baseLevelAlgorithm.Clone(); clonedVc1.Randomize(rand); clonedVc1.Parameterize(first); clonedVc2.Randomize(rand); clonedVc2.Parameterize(second); var popSizeBefore = first.PopulationSize.Value; var mutRateBefore = first.MutationProbability.Value; var mutOpBefore = first.Mutator; var selOpBefore = first.Selector; //var groupSizeBefore = ((TournamentSelector)first.Selector).GroupSizeParameter.Value.Value; //clonedVc1.Cross(clonedVc2, rand); todo ParameterConfigurationCrossover.Apply(rand, clonedVc1, clonedVc2, new DiscreteIntValueCrossover(), new AverageDoubleValueCrossover()); clonedVc1.Parameterize(first); Console.WriteLine(string.Format("PopSize: first: {0}, second: {1}, crossed: {2}", popSizeBefore, second.PopulationSize, first.PopulationSize)); Console.WriteLine(string.Format("MutRate: first: {0}, second: {1}, crossed: {2}", mutRateBefore, second.MutationProbability, first.MutationProbability)); Console.WriteLine(string.Format("MutOp: first: {0}, second: {1}, crossed: {2}", mutOpBefore, second.Mutator, first.Mutator)); Console.WriteLine(string.Format("SelOp: first: {0}, second: {1}, crossed: {2}", selOpBefore, second.Selector, first.Selector)); //Console.WriteLine(string.Format("GrSi: first: {0}, second: {1}, crossed: {2}", groupSizeBefore, ((TournamentSelector)second.Selector).GroupSizeParameter.Value, ((TournamentSelector)first.Selector).GroupSizeParameter.Value)); Console.WriteLine("---"); } Console.WriteLine("======================="); } private static void ConfigureMutationOperator(ParameterConfigurationTree algorithmVc) { var mutationOperator = algorithmVc.AlgorithmConfiguration.ParameterConfigurations.Where(x => x.Name == "Mutator").SingleOrDefault(); mutationOperator.Optimize = true; // uncheck multiMutator to avoid Michalewicz issue //var multiMutator = mutationOperator.ValueConfigurations.Where(x => x.ActualValue.Value != null && x.ActualValue.Value.ItemName.StartsWith("Multi")).SingleOrDefault(); //if (multiMutator != null) { // mutationOperator.ValueConfigurations.SetItemCheckedState(multiMutator, false); //} // add another normal - don't do this with 'new', because ActualNames will not be set correctly. It should be copied from an existing one // mutationOperator.ValueConfigurations.Add(new ParameterizedValueConfiguration(new NormalAllPositionsManipulator(), typeof(NormalAllPositionsManipulator)), true); } private static void ConfigureSelectionOperator(ParameterConfigurationTree algorithmVc, bool configureTournamenSize) { var selectionOperatorPc = algorithmVc.AlgorithmConfiguration.ParameterConfigurations.Where(x => x.Name == "Selector").SingleOrDefault(); selectionOperatorPc.Optimize = true; foreach (var vc in selectionOperatorPc.ValueConfigurations) { if (vc.ActualValue.ValueDataType == typeof(TournamentSelector)) { selectionOperatorPc.ValueConfigurations.SetItemCheckedState(vc, true); if (configureTournamenSize) { vc.Optimize = true; ConfigureTournamentGroupSize((ParameterizedValueConfiguration)vc); } } else if (vc.ActualValue.ValueDataType == typeof(RandomSelector)) { selectionOperatorPc.ValueConfigurations.SetItemCheckedState(vc, true); } else { selectionOperatorPc.ValueConfigurations.SetItemCheckedState(vc, true); } } } private static void ConfigureTournamentGroupSize(ParameterizedValueConfiguration tournamentVc) { var groupSizePc = tournamentVc.ParameterConfigurations.Where(x => x.ParameterName == "GroupSize").SingleOrDefault(); groupSizePc.Optimize = true; var groupSizeVc = (RangeValueConfiguration)groupSizePc.ValueConfigurations.First(); groupSizeVc.Optimize = true; groupSizeVc.RangeConstraint.LowerBound = new IntValue(0); groupSizeVc.RangeConstraint.UpperBound = new IntValue(10); groupSizeVc.RangeConstraint.StepSize = new IntValue(1); } private static void ConfigurePopulationSize(ParameterConfigurationTree algorithmVc, int lower, int upper, int stepsize) { var populationSizePc = algorithmVc.AlgorithmConfiguration.ParameterConfigurations.Where(x => x.Name == "PopulationSize").SingleOrDefault(); populationSizePc.Optimize = true; var populationSizeVc = (RangeValueConfiguration)populationSizePc.ValueConfigurations.First(); populationSizeVc.Optimize = true; populationSizeVc.RangeConstraint.LowerBound = new IntValue(lower); populationSizeVc.RangeConstraint.UpperBound = new IntValue(upper); populationSizeVc.RangeConstraint.StepSize = new IntValue(stepsize); } private static void ConfigureMutationRate(ParameterConfigurationTree algorithmVc, double lower, double upper, double stepsize) { var mutationRatePc = algorithmVc.AlgorithmConfiguration.ParameterConfigurations.Where(x => x.Name == "MutationProbability").SingleOrDefault(); mutationRatePc.Optimize = true; var mutationRateVc = (RangeValueConfiguration)mutationRatePc.ValueConfigurations.First(); mutationRateVc.Optimize = true; mutationRateVc.RangeConstraint.LowerBound = new PercentValue(lower); mutationRateVc.RangeConstraint.UpperBound = new PercentValue(upper); mutationRateVc.RangeConstraint.StepSize = new PercentValue(stepsize); } private static void ConfigureElites(ParameterConfigurationTree algorithmVc, int from, int to, int stepSize) { var elitesPc = algorithmVc.AlgorithmConfiguration.ParameterConfigurations.Where(x => x.Name == "Elites").SingleOrDefault(); elitesPc.Optimize = true; var elitesVc = (RangeValueConfiguration)elitesPc.ValueConfigurations.First(); elitesVc.Optimize = true; elitesVc.RangeConstraint.LowerBound = new IntValue(from); elitesVc.RangeConstraint.UpperBound = new IntValue(to); elitesVc.RangeConstraint.StepSize = new IntValue(stepSize); } private static void TestOptimization(EngineAlgorithm metaLevelAlgorithm) { string path = Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "Results"); if (!Directory.Exists(path)) Directory.CreateDirectory(path); string id = DateTime.Now.ToString("yyyy.MM.dd - HH;mm;ss,ffff"); string resultPath = Path.Combine(path, string.Format("{0} - Result.hl", id)); string outputPath = Path.Combine(path, string.Format("{0} - Console.txt", id)); using (var sw = new StreamWriter(outputPath)) { sw.AutoFlush = true; StringBuilder sb1 = new StringBuilder(); sb1.AppendFormat("Meta.PopulationSize: {0}\n", metaAlgorithmPopulationSize); sb1.AppendFormat("Meta.MaxGenerations: {0}\n", metaAlgorithmMaxGenerations); sb1.AppendFormat("Meta.Repetitions : {0}\n", metaProblemRepetitions); sb1.AppendFormat("Meta.MutProb : {0}\n", ((GeneticAlgorithm)metaLevelAlgorithm).MutationProbability.Value); sb1.AppendFormat("Base.MaxGenerations: {0}\n", baseAlgorithmMaxGenerations); sb1.AppendLine("Problems:"); foreach (var prob in ((MetaOptimizationProblem)metaLevelAlgorithm.Problem).Problems) { sb1.Append(prob.Name); var sotf = prob as SingleObjectiveTestFunctionProblem; if (sotf != null) { sb1.AppendFormat(" {0}", sotf.ProblemSize.Value); } sb1.AppendLine(); } sw.WriteLine(sb1.ToString()); Console.WriteLine(sb1.ToString()); metaLevelAlgorithm.Stopped += new EventHandler(metaLevelAlgorithm_Stopped); metaLevelAlgorithm.Paused += new EventHandler(metaLevelAlgorithm_Paused); metaLevelAlgorithm.ExceptionOccurred += new EventHandler>(metaLevelAlgorithm_ExceptionOccurred); metaLevelAlgorithm.Start(); int i = 0; int currentGeneration = -1; do { Thread.Sleep(1000); if (metaLevelAlgorithm.Results.ContainsKey("Generations") && ((IntValue)metaLevelAlgorithm.Results["Generations"].Value).Value != currentGeneration) { while (metaLevelAlgorithm.Results.Count < 6) Thread.Sleep(1000); StringBuilder sb = new StringBuilder(); sb.AppendLine(DateTime.Now.ToLongTimeString()); sb.AppendLine("================================="); sb.AppendLine(metaLevelAlgorithm.ExecutionState.ToString()); ResultCollection rsClone = null; while (rsClone == null) { try { rsClone = (ResultCollection)metaLevelAlgorithm.Results.Clone(); } catch { } } foreach (var result in rsClone) { sb.AppendLine(result.ToString()); if (result.Name == "Population") { RunCollection rc = (RunCollection)result.Value; var orderedRuns = rc.OrderBy(x => x.Results["AverageQualityNormalized"]); TableBuilder tb = new TableBuilder("QNorm", "Qualities"/*, "PoSi"*/ ,"MutRa" /*,"Eli", "SelOp"*/, "MutOp"/*, "NrSelSubScopes"*/); foreach (IRun run in orderedRuns) { //string selector; //if (run.Parameters["Selector"] is TournamentSelector) { // selector = string.Format("{0} ({1})", run.Parameters["Selector"].ToString(), ((TournamentSelector)run.Parameters["Selector"]).GroupSizeParameter.Value.ToString()); //} else { // selector = string.Format("{0}", run.Parameters["Selector"].ToString()); //} tb.AppendRow( ((DoubleValue)run.Results["AverageQualityNormalized"]).Value.ToString("#0.0000") ,((DoubleArray)run.Results["RunsAverageQualities"]).ToString() //,((IntValue)run.Parameters["PopulationSize"]).Value.ToString() ,((DoubleValue)run.Parameters["MutationProbability"]).Value.ToString("0.0000") //,((IntValue)run.Parameters["Elites"]).Value.ToString() //,Shorten(selector, 20) ,Shorten(run.Parameters.ContainsKey("Mutator") ? run.Parameters["Mutator"].ToString() : "null", 40) //,((ISelector)run.Parameters["Selector"]).NumberOfSelectedSubScopesParameter.Value.ToString() ); } sb.AppendLine(tb.ToString()); } } // foreach //Console.Clear(); Console.WriteLine(sb.ToString()); sw.WriteLine(sb.ToString()); currentGeneration = ((IntValue)metaLevelAlgorithm.Results["Generations"].Value).Value; } // if //if (i % 30 == 0) GC.Collect(); i++; } while (metaLevelAlgorithm.ExecutionState != ExecutionState.Stopped); } Console.WriteLine(); Console.WriteLine("Storing..."); ContentManager.Save((IStorableContent)metaLevelAlgorithm, resultPath, true); Console.WriteLine("Finished"); } private static void metaLevelAlgorithm_ExceptionOccurred(object sender, EventArgs e) { Console.WriteLine("metaLevelAlgorithm_ExceptionOccurred"); Console.WriteLine(e.Value.ToString()); if (e.Value.InnerException != null) { Console.WriteLine(e.Value.InnerException.ToString()); } } private static void metaLevelAlgorithm_Paused(object sender, EventArgs e) { Console.WriteLine("metaLevelAlgorithm_Paused"); } private static void metaLevelAlgorithm_Stopped(object sender, EventArgs e) { Console.WriteLine("metaLevelAlgorithm_Stopped"); } private static void TestShorten() { int n = 8; Console.WriteLine(Shorten("1", n)); Console.WriteLine(Shorten("12", n)); Console.WriteLine(Shorten("123", n)); Console.WriteLine(Shorten("1234", n)); Console.WriteLine(Shorten("12345", n)); Console.WriteLine(Shorten("123456", n)); Console.WriteLine(Shorten("1234567", n)); Console.WriteLine(Shorten("12345678", n)); Console.WriteLine(Shorten("123456789", n)); Console.WriteLine(Shorten("1234567890", n)); Console.WriteLine(Shorten("12345678901", n)); } private static string Shorten(string s, int n) { string placeholder = ".."; if (s.Length <= n) return s; int len = n / 2 - placeholder.Length / 2; string start = s.Substring(0, len); string end = s.Substring(s.Length - len, len); return start + placeholder + end; } private static void TestIntSampling() { System.Random rand = new System.Random(); int lower = 10; int upper = 20; int stepsize = 1; for (int i = 0; i < 100; i++) { int val; do { val = rand.Next(lower / stepsize, upper / stepsize + 1) * stepsize; } while (val < lower || val > upper); Console.WriteLine(val); } } private static void TestDoubleSampling() { System.Random rand = new System.Random(); double lower = 2; double upper = 3; double stepsize = 0.6; for (int i = 0; i < 100; i++) { double val; do { val = Math.Round((rand.NextDouble() * (upper - lower) + lower) / stepsize, 0) * stepsize; } while (val < lower || val > upper); Console.WriteLine(val); } } private static IEnumerable GetValidValues(IValueParameter valueParameter) { return ApplicationManager.Manager.GetInstances(valueParameter.DataType).Select(x => (IItem)x).OrderBy(x => x.ItemName); } } public class Node { public string Name { get; set; } public int ActualValue { get; set; } public int[] PossibleValues { get; set; } public List ChildNodes { get; set; } public Node(string name) { this.Name = name; PossibleValues = new int[] { 1, 2, 3 }; ChildNodes = new List(); } public void Init() { this.ActualValue = PossibleValues.First(); foreach (var child in ChildNodes) { child.Init(); } } public override string ToString() { StringBuilder sb = new StringBuilder(); sb.Append(string.Format("{0}:{1}", this.Name, this.ActualValue)); if (this.ChildNodes.Count() > 0) { sb.Append(" ("); var lst = new List(); foreach (Node child in ChildNodes) { lst.Add(child.ToString()); } sb.Append(string.Join(", ", lst.ToArray())); sb.Append(")"); } return sb.ToString(); } } public class NodeEnumerator : IEnumerator { private Node node; private List enumerators; public NodeEnumerator(Node node) { this.node = node; this.enumerators = new List(); } public Node Current { get { return node; } } object IEnumerator.Current { get { return Current; } } public void Dispose() { } public bool MoveNext() { int i = 0; bool ok = false; while (!ok && i < enumerators.Count) { if (enumerators[i].MoveNext()) { ok = true; } else { i++; } } if (ok) { for (int k = i - 1; k >= 0; k--) { enumerators[k].Reset(); enumerators[k].MoveNext(); } } else { return false; } node.ActualValue = (int)enumerators[0].Current; return true; } public void Reset() { enumerators.Clear(); enumerators.Add(node.PossibleValues.GetEnumerator()); enumerators[0].Reset(); foreach (var child in node.ChildNodes) { var enumerator = new NodeEnumerator(child); enumerator.Reset(); enumerator.MoveNext(); enumerators.Add(enumerator); } } } }