using System.Collections.Generic; using System.Diagnostics; using System.Linq; using HeuristicLab.Algorithms.GeneticAlgorithm; using HeuristicLab.Core; using HeuristicLab.PluginInfrastructure; using HeuristicLab.Parameters; using HeuristicLab.Problems.MetaOptimization; using HeuristicLab.Data; using System; using System.Threading; using HeuristicLab.Random; using HeuristicLab.Optimization; using HeuristicLab.Common; using System.IO; using HeuristicLab.Problems.TestFunctions; using System.Text; using HeuristicLab.Selection; using HeuristicLab.Algorithms.EvolutionStrategy; using HeuristicLab.PluginInfrastructure.Manager; namespace HeuristicLab.MetaOptimization.Test { class Program { private static int metaAlgorithmPopulationSize = 50; private static int metaAlgorithmMaxGenerations = 30; private static int metaProblemRepetitions = 6; private static int baseAlgorithmMaxGenerations = 250; static void Main(string[] args) { //TestShorten(); //TestIntSampling(); //TestDoubleSampling(); //TestTypeDiscovery(); //TestOperators(); GeneticAlgorithm baseLevelAlgorithm = new GeneticAlgorithm(); MetaOptimizationProblem metaOptimizationProblem = new MetaOptimizationProblem(); metaOptimizationProblem.Repetitions = new IntValue(metaProblemRepetitions); GeneticAlgorithm metaLevelAlgorithm = GetMetaGA(metaOptimizationProblem); //EvolutionStrategy metaLevelAlgorithm = GetMetaES(metaOptimizationProblem); IValueConfiguration algorithmVc = SetupGAAlgorithm(baseLevelAlgorithm, metaOptimizationProblem); //Console.WriteLine("Press enter to start"); //Console.ReadLine(); //TestConfiguration(algorithmVc, baseLevelAlgorithm); //Console.WriteLine("Press enter to start"); //Console.ReadLine(); TestOptimization(metaLevelAlgorithm); //TestMemoryLeak(metaLevelAlgorithm); Console.ReadLine(); } private static void TestOperators() { IRandom random = new MersenneTwister(); ParameterConfigurationManipulator manip = new ParameterConfigurationManipulator(); manip.IntValueManipulatorParameter.ActualValue = new UniformIntValueManipulator(); manip.DoubleValueManipulatorParameter.ActualValue = new NormalDoubleValueManipulator(); var doubleRange = new DoubleValueRange(new DoubleValue(0), new DoubleValue(100), new DoubleValue(0.1)); using (var sw = new StreamWriter("out-DoubleValue.txt")) { for (int i = 0; i < 10000; i++) { var val = new DoubleValue(50); NormalDoubleValueManipulator.ApplyStatic(random, val, doubleRange); sw.WriteLine(val); } } var percentRange = new PercentValueRange(new PercentValue(0), new PercentValue(1), new PercentValue(0.001)); using (var sw = new StreamWriter("out-PercentValue.txt")) { for (int i = 0; i < 10000; i++) { var val = new PercentValue(0.5); NormalDoubleValueManipulator.ApplyStatic(random, val, percentRange.AsDoubleValueRange()); sw.WriteLine(val); } } var intRange = new IntValueRange(new IntValue(0), new IntValue(100), new IntValue(1)); using (var sw = new StreamWriter("out-IntValue.txt")) { for (int i = 0; i < 10000; i++) { var val = new IntValue(50); UniformIntValueManipulator.ApplyStatic(random, val, intRange); sw.WriteLine(val); } } Console.ReadLine(); } private static void TestTypeDiscovery() { PluginLoader.pluginAssemblies.Any(); var items = ApplicationManager.Manager.GetInstances(typeof(DoubleArray)).ToArray(); foreach (var item in items) { Console.WriteLine(item.ToString()); } } private static void TestMemoryLeak(GeneticAlgorithm metaLevelAlgorithm) { IValueConfiguration algorithmVc = ((MetaOptimizationProblem)metaLevelAlgorithm.Problem).AlgorithmParameterConfiguration; Console.WriteLine("Starting Memory Test..."); Console.ReadLine(); var clones = new List(); for (int i = 0; i < 1000; i++) { var clone = algorithmVc.Clone(); clones.Add(clone); } Console.WriteLine("Finished. Now GC..."); Console.ReadLine(); GC.Collect(); Console.WriteLine("Finished!"); Console.ReadLine(); } private static GeneticAlgorithm GetMetaGA(MetaOptimizationProblem metaOptimizationProblem) { GeneticAlgorithm metaLevelAlgorithm = new GeneticAlgorithm(); metaLevelAlgorithm.PopulationSize.Value = metaAlgorithmPopulationSize; metaLevelAlgorithm.MaximumGenerations.Value = metaAlgorithmMaxGenerations; metaLevelAlgorithm.Problem = metaOptimizationProblem; metaLevelAlgorithm.Engine = new SequentialEngine.SequentialEngine(); metaLevelAlgorithm.Mutator = new ParameterConfigurationManipulator(); metaLevelAlgorithm.MutationProbability.Value = 0.15; return metaLevelAlgorithm; } private static EvolutionStrategy GetMetaES(MetaOptimizationProblem metaOptimizationProblem) { EvolutionStrategy metaLevelAlgorithm = new EvolutionStrategy(); metaLevelAlgorithm.PopulationSize.Value = metaAlgorithmPopulationSize; metaLevelAlgorithm.MaximumGenerations.Value = metaAlgorithmMaxGenerations; metaLevelAlgorithm.Problem = metaOptimizationProblem; metaLevelAlgorithm.Engine = new SequentialEngine.SequentialEngine(); metaLevelAlgorithm.Mutator = new ParameterConfigurationManipulator(); //metaLevelAlgorithm.MutationProbability.Value = 0.15; return metaLevelAlgorithm; } private static IValueConfiguration SetupGAAlgorithm(GeneticAlgorithm baseLevelAlgorithm, MetaOptimizationProblem metaOptimizationProblem) { baseLevelAlgorithm.Problem = new HeuristicLab.Problems.TestFunctions.SingleObjectiveTestFunctionProblem(); baseLevelAlgorithm.MaximumGenerations.Value = baseAlgorithmMaxGenerations; metaOptimizationProblem.Algorithm = baseLevelAlgorithm; IValueConfiguration algorithmVc = metaOptimizationProblem.AlgorithmParameterConfiguration; metaOptimizationProblem.Problems.Add(new HeuristicLab.Problems.TestFunctions.SingleObjectiveTestFunctionProblem() { Evaluator = new GriewankEvaluator(), ProblemSize = new IntValue(500) }); metaOptimizationProblem.Problems.Add(new HeuristicLab.Problems.TestFunctions.SingleObjectiveTestFunctionProblem() { Evaluator = new GriewankEvaluator(), ProblemSize = new IntValue(1000) }); ConfigurePopulationSize(algorithmVc); ConfigureMutationRate(algorithmVc); ConfigureMutationOperator(algorithmVc); ConfigureElites(algorithmVc); ConfigureSelectionOperator(algorithmVc); return algorithmVc; } private static void TestConfiguration(IValueConfiguration algorithmVc, GeneticAlgorithm baseLevelAlgorithm) { IRandom rand = new FastRandom(0); // set random values for (int i = 0; i < 10; i++) { IValueConfiguration clonedVc = (IValueConfiguration)algorithmVc.Clone(); GeneticAlgorithm newAlg = (GeneticAlgorithm)baseLevelAlgorithm.Clone(); clonedVc.Randomize(rand); clonedVc.Parameterize(newAlg); Console.WriteLine(string.Format("PopSize: original: {0}, randomized: {1}", baseLevelAlgorithm.PopulationSize, newAlg.PopulationSize)); Console.WriteLine(string.Format("MutRate: original: {0}, randomized: {1}", baseLevelAlgorithm.MutationProbability, newAlg.MutationProbability)); Console.WriteLine(string.Format("MutOp: original: {0}, randomized: {1}", baseLevelAlgorithm.Mutator, newAlg.Mutator)); Console.WriteLine(string.Format("SelOp: original: {0}, randomized: {1}", baseLevelAlgorithm.Selector, newAlg.Selector)); //Console.WriteLine(string.Format("GrSi: original: {0}, randomized: {1}", "?", ((TournamentSelector)newAlg.Selector).GroupSizeParameter.Value)); Console.WriteLine("---"); } Console.WriteLine("======================="); algorithmVc.Randomize(rand); algorithmVc.Parameterize(baseLevelAlgorithm); // mutate for (int i = 0; i < 10; i++) { IValueConfiguration clonedVc = (IValueConfiguration)algorithmVc.Clone(); GeneticAlgorithm newAlg = (GeneticAlgorithm)baseLevelAlgorithm.Clone(); //clonedVc.Mutate(rand); //.Apply(rand, clonedVc); todo clonedVc.Parameterize(newAlg); Console.WriteLine(string.Format("PopSize: original: {0}, mutated: {1}", baseLevelAlgorithm.PopulationSize, newAlg.PopulationSize)); Console.WriteLine(string.Format("MutRate: original: {0}, mutated: {1}", baseLevelAlgorithm.MutationProbability, newAlg.MutationProbability)); Console.WriteLine(string.Format("MutOp: original: {0}, mutated: {1}", baseLevelAlgorithm.Mutator, newAlg.Mutator)); Console.WriteLine(string.Format("SelOp: original: {0}, mutated: {1}", baseLevelAlgorithm.Selector, newAlg.Selector)); //Console.WriteLine(string.Format("GrSi: original: {0}, mutated: {1}", ((TournamentSelector)baseLevelAlgorithm.Selector).GroupSizeParameter.Value, ((TournamentSelector)newAlg.Selector).GroupSizeParameter.Value)); Console.WriteLine("---"); } Console.WriteLine("======================="); // cross for (int i = 0; i < 10; i++) { IValueConfiguration clonedVc1 = (IValueConfiguration)algorithmVc.Clone(); IValueConfiguration clonedVc2 = (IValueConfiguration)algorithmVc.Clone(); GeneticAlgorithm first = (GeneticAlgorithm)baseLevelAlgorithm.Clone(); GeneticAlgorithm second = (GeneticAlgorithm)baseLevelAlgorithm.Clone(); clonedVc1.Randomize(rand); clonedVc1.Parameterize(first); clonedVc2.Randomize(rand); clonedVc2.Parameterize(second); var popSizeBefore = first.PopulationSize.Value; var mutRateBefore = first.MutationProbability.Value; var mutOpBefore = first.Mutator; var selOpBefore = first.Selector; //var groupSizeBefore = ((TournamentSelector)first.Selector).GroupSizeParameter.Value.Value; //clonedVc1.Cross(clonedVc2, rand); todo clonedVc1.Parameterize(first); Console.WriteLine(string.Format("PopSize: first: {0}, second: {1}, crossed: {2}", popSizeBefore, second.PopulationSize, first.PopulationSize)); Console.WriteLine(string.Format("MutRate: first: {0}, second: {1}, crossed: {2}", mutRateBefore, second.MutationProbability, first.MutationProbability)); Console.WriteLine(string.Format("MutOp: first: {0}, second: {1}, crossed: {2}", mutOpBefore, second.Mutator, first.Mutator)); Console.WriteLine(string.Format("SelOp: first: {0}, second: {1}, crossed: {2}", selOpBefore, second.Selector, first.Selector)); //Console.WriteLine(string.Format("GrSi: first: {0}, second: {1}, crossed: {2}", groupSizeBefore, ((TournamentSelector)second.Selector).GroupSizeParameter.Value, ((TournamentSelector)first.Selector).GroupSizeParameter.Value)); Console.WriteLine("---"); } Console.WriteLine("======================="); } private static void ConfigureMutationOperator(IValueConfiguration algorithmVc) { var mutationOperator = algorithmVc.ParameterConfigurations.Where(x => x.Name == "Mutator").SingleOrDefault(); mutationOperator.Optimize = true; // uncheck multiMutator to avoid Michalewicz issue var multiMutator = mutationOperator.ValueConfigurations.Where(x => x.ActualValue.Value != null && x.ActualValue.Value.ItemName.StartsWith("Multi")).SingleOrDefault(); if (multiMutator != null) { mutationOperator.ValueConfigurations.SetItemCheckedState(multiMutator, false); } } private static void ConfigureSelectionOperator(IValueConfiguration algorithmVc) { var selectionOperatorPc = algorithmVc.ParameterConfigurations.Where(x => x.Name == "Selector").SingleOrDefault(); selectionOperatorPc.Optimize = true; foreach (var vc in selectionOperatorPc.ValueConfigurations) { if (vc.ActualValue.ValueDataType == typeof(TournamentSelector)) { selectionOperatorPc.ValueConfigurations.SetItemCheckedState(vc, true); vc.Optimize = true; ConfigureTournamentGroupSize(vc); } else if (vc.ActualValue.ValueDataType == typeof(RandomSelector)) { selectionOperatorPc.ValueConfigurations.SetItemCheckedState(vc, true); } else { selectionOperatorPc.ValueConfigurations.SetItemCheckedState(vc, true); } } } private static void ConfigureTournamentGroupSize(IValueConfiguration tournamentVc) { var groupSizePc = tournamentVc.ParameterConfigurations.Where(x => x.ParameterName == "GroupSize").SingleOrDefault(); groupSizePc.Optimize = true; groupSizePc.ValueConfigurations.First().Optimize = true; groupSizePc.ValueConfigurations.First().RangeConstraint.LowerBound = new IntValue(0); groupSizePc.ValueConfigurations.First().RangeConstraint.UpperBound = new IntValue(100); groupSizePc.ValueConfigurations.First().RangeConstraint.StepSize = new IntValue(1); } private static void ConfigurePopulationSize(IValueConfiguration algorithmVc) { var populationSizePc = algorithmVc.ParameterConfigurations.Where(x => x.Name == "PopulationSize").SingleOrDefault(); populationSizePc.Optimize = true; var populationSizeVc = populationSizePc.ValueConfigurations.First(); populationSizeVc.Optimize = true; populationSizeVc.RangeConstraint.LowerBound = new IntValue(20); populationSizeVc.RangeConstraint.UpperBound = new IntValue(100); populationSizeVc.RangeConstraint.StepSize = new IntValue(1); } private static void ConfigureMutationRate(IValueConfiguration algorithmVc) { var mutationRatePc = algorithmVc.ParameterConfigurations.Where(x => x.Name == "MutationProbability").SingleOrDefault(); mutationRatePc.Optimize = true; var mutationRateVc = mutationRatePc.ValueConfigurations.First(); mutationRateVc.Optimize = true; mutationRateVc.RangeConstraint.LowerBound = new PercentValue(0.0); mutationRateVc.RangeConstraint.UpperBound = new PercentValue(1.0); mutationRateVc.RangeConstraint.StepSize = new PercentValue(0.01); } private static void ConfigureElites(IValueConfiguration algorithmVc) { var elitesPc = algorithmVc.ParameterConfigurations.Where(x => x.Name == "Elites").SingleOrDefault(); elitesPc.Optimize = true; var elitesVc = elitesPc.ValueConfigurations.First(); elitesVc.Optimize = true; elitesVc.RangeConstraint.LowerBound = new IntValue(0); elitesVc.RangeConstraint.UpperBound = new IntValue(20); elitesVc.RangeConstraint.StepSize = new IntValue(1); } private static void TestOptimization(EngineAlgorithm metaLevelAlgorithm) { ContentManager.Initialize(new PersistenceContentManager()); string path = Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "Results"); if (!Directory.Exists(path)) Directory.CreateDirectory(path); string id = DateTime.Now.ToString("yyyy.MM.dd - HH;mm;ss,ffff"); string resultPath = Path.Combine(path, string.Format("{0} - Result.hl", id)); string outputPath = Path.Combine(path, string.Format("{0} - Console.txt", id)); using (var sw = new StreamWriter(outputPath)) { sw.AutoFlush = true; StringBuilder sb1 = new StringBuilder(); sb1.AppendLine(string.Format("Meta.PopulationSize: {0}", metaAlgorithmPopulationSize)); sb1.AppendLine(string.Format("Meta.MaxGenerations: {0}", metaAlgorithmMaxGenerations)); sb1.AppendLine(string.Format("Meta.Repetitions : {0}", metaProblemRepetitions)); sb1.AppendLine(string.Format("Base.MaxGenerations: {0}", baseAlgorithmMaxGenerations)); sw.WriteLine(sb1.ToString()); Console.WriteLine(sb1.ToString()); metaLevelAlgorithm.Start(); int i = 0; int currentGeneration = -1; do { Thread.Sleep(500); if (metaLevelAlgorithm.Results.ContainsKey("Generations") && ((IntValue)metaLevelAlgorithm.Results["Generations"].Value).Value != currentGeneration) { while (metaLevelAlgorithm.Results.Count < 3) Thread.Sleep(100); StringBuilder sb = new StringBuilder(); sb.AppendLine(DateTime.Now.ToLongTimeString()); sb.AppendLine("================================="); sb.AppendLine(metaLevelAlgorithm.ExecutionState.ToString()); foreach (var result in metaLevelAlgorithm.Results) { sb.AppendLine(result.ToString()); if (result.Name == "Population") { RunCollection rc = (RunCollection)result.Value; var orderedRuns = rc.OrderBy(x => x.Results["RunsAverageQuality"]); sb.AppendLine("Qual. PoSi MutRa Eli SelOp MutOp"); foreach (IRun run in orderedRuns) { string selector; if (run.Parameters["Selector"] is TournamentSelector) { selector = string.Format("{0} ({1})", run.Parameters["Selector"].ToString(), ((TournamentSelector)run.Parameters["Selector"]).GroupSizeParameter.Value.ToString()); } else { selector = string.Format("{0}", run.Parameters["Selector"].ToString()); } sb.AppendLine(string.Format("{0} {1} {2} {3} {4} {5}", ((DoubleValue)run.Results["RunsAverageQuality"]).Value.ToString("#0.00").PadLeft(7, ' '), ((IntValue)run.Parameters["PopulationSize"]).Value.ToString().PadLeft(3, ' ').PadRight(3, ' '), ((DoubleValue)run.Parameters["MutationProbability"]).Value.ToString("0.00").PadLeft(5, ' '), ((IntValue)run.Parameters["Elites"]).Value.ToString().PadLeft(3, ' '), Shorten(selector, 20).PadRight(20, ' '), run.Parameters.ContainsKey("Mutator") ? run.Parameters["Mutator"].ToString() : "null")); } } } // foreach Console.Clear(); Console.WriteLine(sb.ToString()); sw.WriteLine(sb.ToString()); currentGeneration = ((IntValue)metaLevelAlgorithm.Results["Generations"].Value).Value; } // if if (i % 30 == 0) GC.Collect(); i++; } while (metaLevelAlgorithm.ExecutionState != ExecutionState.Stopped); } Console.WriteLine(); Console.WriteLine("Storing..."); ContentManager.Save((IStorableContent)metaLevelAlgorithm, resultPath, true); Console.WriteLine("Finished"); } private static void TestShorten() { int n = 8; Console.WriteLine(Shorten("1", n)); Console.WriteLine(Shorten("12", n)); Console.WriteLine(Shorten("123", n)); Console.WriteLine(Shorten("1234", n)); Console.WriteLine(Shorten("12345", n)); Console.WriteLine(Shorten("123456", n)); Console.WriteLine(Shorten("1234567", n)); Console.WriteLine(Shorten("12345678", n)); Console.WriteLine(Shorten("123456789", n)); Console.WriteLine(Shorten("1234567890", n)); Console.WriteLine(Shorten("12345678901", n)); } private static string Shorten(string s, int n) { string placeholder = ".."; if (s.Length <= n) return s; int len = n / 2 - placeholder.Length / 2; string start = s.Substring(0, len); string end = s.Substring(s.Length - len, len); return start + placeholder + end; } private static void TestIntSampling() { System.Random rand = new System.Random(); int lower = 10; int upper = 20; int stepsize = 7; for (int i = 0; i < 100; i++) { int val; do { val = rand.Next(lower / stepsize, upper / stepsize + 1) * stepsize; } while (val < lower || val > upper); Console.WriteLine(val); } } private static void TestDoubleSampling() { System.Random rand = new System.Random(); double lower = 2; double upper = 3; double stepsize = 0.6; for (int i = 0; i < 100; i++) { double val; do { val = Math.Round((rand.NextDouble() * (upper - lower) + lower) / stepsize, 0) * stepsize; } while (val < lower || val > upper); Console.WriteLine(val); } } private static IEnumerable GetValidValues(IValueParameter valueParameter) { return ApplicationManager.Manager.GetInstances(valueParameter.DataType).Select(x => (IItem)x).OrderBy(x => x.ItemName); } } }