[8576] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Linq;
|
---|
| 23 | using HeuristicLab.Common;
|
---|
| 24 | using HeuristicLab.Core;
|
---|
| 25 | using HeuristicLab.Data;
|
---|
| 26 | using HeuristicLab.Encodings.ParameterConfigurationEncoding;
|
---|
| 27 | using HeuristicLab.Operators;
|
---|
| 28 | using HeuristicLab.Optimization;
|
---|
| 29 | using HeuristicLab.Parameters;
|
---|
| 30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 31 |
|
---|
| 32 | namespace HeuristicLab.Problems.MetaOptimization {
|
---|
| 33 | /// <summary>
|
---|
| 34 | /// An analyzer that records the best parameter configuration.
|
---|
| 35 | /// </summary>
|
---|
| 36 | [Item("PopulationAnalyzer", "An analyzer that records the best parameter configuration.")]
|
---|
| 37 | [StorableClass]
|
---|
| 38 | public sealed class PopulationAnalyzer : SingleSuccessorOperator, IAnalyzer {
|
---|
| 39 | public bool EnabledByDefault {
|
---|
| 40 | get { return true; }
|
---|
| 41 | }
|
---|
| 42 |
|
---|
| 43 | public ScopeTreeLookupParameter<ParameterConfigurationTree> ParameterConfigurationParameter {
|
---|
| 44 | get { return (ScopeTreeLookupParameter<ParameterConfigurationTree>)Parameters["ParameterConfigurationTree"]; }
|
---|
| 45 | }
|
---|
| 46 | public ValueLookupParameter<ResultCollection> ResultsParameter {
|
---|
| 47 | get { return (ValueLookupParameter<ResultCollection>)Parameters["Results"]; }
|
---|
| 48 | }
|
---|
| 49 | public LookupParameter<RunCollection> PopulationParameter {
|
---|
| 50 | get { return (LookupParameter<RunCollection>)Parameters["Population"]; }
|
---|
| 51 | }
|
---|
| 52 | public LookupParameter<BoolValue> MaximizationParameter {
|
---|
| 53 | get { return (LookupParameter<BoolValue>)Parameters["Maximization"]; }
|
---|
| 54 | }
|
---|
| 55 |
|
---|
| 56 | #region Constructors and Cloning
|
---|
| 57 | public PopulationAnalyzer()
|
---|
| 58 | : base() {
|
---|
| 59 | Parameters.Add(new ScopeTreeLookupParameter<ParameterConfigurationTree>("ParameterConfigurationTree", ""));
|
---|
| 60 | Parameters.Add(new ValueLookupParameter<ResultCollection>("Results", ""));
|
---|
| 61 | Parameters.Add(new LookupParameter<RunCollection>("Population", ""));
|
---|
| 62 | Parameters.Add(new LookupParameter<BoolValue>("Maximization", "Set to false if the problem should be minimized."));
|
---|
| 63 | }
|
---|
| 64 |
|
---|
| 65 | [StorableConstructor]
|
---|
| 66 | private PopulationAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
| 67 | private PopulationAnalyzer(PopulationAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
| 68 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 69 | return new PopulationAnalyzer(this, cloner);
|
---|
| 70 | }
|
---|
| 71 | #endregion
|
---|
| 72 |
|
---|
| 73 | public override IOperation Apply() {
|
---|
| 74 | ResultCollection results = ResultsParameter.ActualValue;
|
---|
| 75 | ItemArray<ParameterConfigurationTree> parameterTrees = ParameterConfigurationParameter.ActualValue;
|
---|
| 76 | bool maximization = MaximizationParameter.ActualValue.Value;
|
---|
| 77 |
|
---|
| 78 | int i = 0;
|
---|
| 79 | RunCollection rc = new RunCollection();
|
---|
| 80 | foreach (ParameterConfigurationTree pt in (maximization ? parameterTrees.OrderByDescending(x => x.Quality) : parameterTrees.OrderBy(x => x.Quality))) {
|
---|
| 81 | rc.Add(pt.ToRun(string.Format("Individual {0} ({1})", i, pt.ParameterInfoString), true));
|
---|
| 82 | i++;
|
---|
| 83 | }
|
---|
| 84 | if (PopulationParameter.ActualValue == null) {
|
---|
| 85 | PopulationParameter.ActualValue = rc;
|
---|
| 86 | results.Add(new Result("Population", rc));
|
---|
| 87 | } else {
|
---|
| 88 | PopulationParameter.ActualValue = rc;
|
---|
| 89 | results["Population"].Value = rc;
|
---|
| 90 | }
|
---|
| 91 |
|
---|
| 92 | return base.Apply();
|
---|
| 93 | }
|
---|
| 94 | }
|
---|
| 95 | }
|
---|