#region License Information
/* HeuristicLab
* Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using HeuristicLab.Analysis;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Encodings.ParameterConfigurationEncoding;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.MetaOptimization {
///
/// An operator for analyzing the diversity of solutions of parameter meta-optimization.
///
[Item("PMOPopulationDiversityAnalyzer", "An operator for analyzing the diversity of solutions of parameter meta-optimization.")]
[StorableClass]
public sealed class PMOPopulationDiversityAnalyzer : PopulationDiversityAnalyzer {
#region Constructors and Cloning
public PMOPopulationDiversityAnalyzer() : base() { }
[StorableConstructor]
private PMOPopulationDiversityAnalyzer(bool deserializing) : base(deserializing) { }
private PMOPopulationDiversityAnalyzer(PMOPopulationDiversityAnalyzer original, Cloner cloner) : base(original, cloner) { }
public override IDeepCloneable Clone(Cloner cloner) {
return new PMOPopulationDiversityAnalyzer(this, cloner);
}
#endregion
protected override double[,] CalculateSimilarities(ParameterConfigurationTree[] solutions) {
// TODO: consider implementing a similarity calculator
int count = solutions.Length;
double[,] similarities = new double[count, count];
for (int i = 0; i < count; i++) {
similarities[i, i] = 1;
for (int j = i + 1; j < count; j++) {
similarities[i, j] = CalculateSimilarity(solutions[i], solutions[j]);
similarities[j, i] = similarities[i, j];
}
}
return similarities;
}
private double CalculateSimilarity(ParameterConfigurationTree left, ParameterConfigurationTree right) {
return left.CalculateSimilarity(right);
}
}
}