#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Text;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Constraints;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Random {
///
/// Normally distributed random number generator.
///
[EmptyStorableClass]
public class NormalRandomizer : OperatorBase {
private static int MAX_NUMBER_OF_TRIES = 100;
///
public override string Description {
get { return "Initializes the value of variable 'Value' to a random value normally distributed with 'Mu' and 'Sigma'."; }
}
///
/// Gets or sets the value for µ.
///
/// Gets or sets the variable with the name Mu through the method
/// of class .
public double Mu {
get { return ((DoubleData)GetVariable("Mu").Value).Data; }
set { ((DoubleData)GetVariable("Mu").Value).Data = value; }
}
///
/// Gets or sets the value for sigma.
///
/// Gets or sets the variable with the name Sigma through the method
/// of class .
public double Sigma {
get { return ((DoubleData)GetVariable("Sigma").Value).Data; }
set { ((DoubleData)GetVariable("Sigma").Value).Data = value; }
}
///
/// Initializes a new instance of with four variable infos
/// (Mu, Sigma, Value and Random).
///
public NormalRandomizer() {
AddVariableInfo(new VariableInfo("Mu", "Parameter mu of the normal distribution", typeof(DoubleData), VariableKind.None));
GetVariableInfo("Mu").Local = true;
AddVariable(new Variable("Mu", new DoubleData(0.0)));
AddVariableInfo(new VariableInfo("Sigma", "Parameter sigma of the normal distribution", typeof(DoubleData), VariableKind.None));
GetVariableInfo("Sigma").Local = true;
AddVariable(new Variable("Sigma", new DoubleData(1.0)));
AddVariableInfo(new VariableInfo("Value", "The value to manipulate (actual type is one of: IntData, DoubleData, ConstrainedIntData, ConstrainedDoubleData)", typeof(IObjectData), VariableKind.In));
AddVariableInfo(new VariableInfo("Random", "The random generator to use", typeof(MersenneTwister), VariableKind.In));
}
///
/// Generates a new normally distributed random variable and assigns it to the specified variable
/// in the given .
///
/// The scope where to assign the new random value to.
/// null.
public override IOperation Apply(IScope scope) {
IObjectData value = GetVariableValue("Value", scope, false);
MersenneTwister mt = GetVariableValue("Random", scope, true);
double mu = GetVariableValue("Mu", scope, true).Data;
double sigma = GetVariableValue("Sigma", scope, true).Data;
NormalDistributedRandom n = new NormalDistributedRandom(mt, mu, sigma);
RandomizeNormal(value, n);
return null;
}
private void RandomizeNormal(IObjectData value, NormalDistributedRandom n) {
// dispatch manually based on dynamic type
if (value is IntData)
RandomizeNormal((IntData)value, n);
else if (value is ConstrainedIntData)
RandomizeNormal((ConstrainedIntData)value, n);
else if (value is DoubleData)
RandomizeNormal((DoubleData)value, n);
else if (value is ConstrainedDoubleData)
RandomizeNormal((ConstrainedDoubleData)value, n);
else throw new InvalidOperationException("Can't handle type " + value.GetType().Name);
}
///
/// Generates a new double random variable based on a continuous, normally distributed random number generator
/// and checks some contraints.
///
/// Thrown when with the given settings no valid value in
/// 100 tries could be found.
///
/// The double object where to assign the new number to and whose constraints
/// must be fulfilled.
/// The continuous, normally distributed random variable.
public void RandomizeNormal(ConstrainedDoubleData data, NormalDistributedRandom normal) {
for (int tries = MAX_NUMBER_OF_TRIES; tries >= 0; tries--) {
double r = normal.NextDouble();
if (IsIntegerConstrained(data)) {
r = Math.Round(r);
}
if (data.TrySetData(r)) {
return;
}
}
throw new InvalidOperationException("Couldn't find a valid value in 100 tries with mu=" + normal.Mu + " sigma=" + normal.Sigma);
}
///
/// Generates a new int random variable based on a continuous, normally distributed random number
/// generator and checks some constraints.
///
/// Thrown when with the given settings no valid
/// value could be found.
/// The int object where to assign the new value to and whose constraints must
/// be fulfilled.
/// The continuous, normally distributed random variable.
public void RandomizeNormal(ConstrainedIntData data, NormalDistributedRandom normal) {
for (int tries = MAX_NUMBER_OF_TRIES; tries >= 0; tries--) {
double r = normal.NextDouble();
if (data.TrySetData((int)Math.Round(r))) // since r is a continuous, normally distributed random variable rounding should be OK
return;
}
throw new InvalidOperationException("Couldn't find a valid value");
}
///
/// Generates a new double random number based on a continuous, normally distributed random number
/// generator .
///
/// The double object where to assign the new value to.
/// The continuous, normally distributed random variable.
public void RandomizeNormal(DoubleData data, NormalDistributedRandom normal) {
data.Data = normal.NextDouble();
}
///
/// Generates a new int random number based on a continuous, normally distributed random number
/// generator .
///
/// The int object where to assign the new value to.
/// The continuous, normally distributed random variable.
public void RandomizeNormal(IntData data, NormalDistributedRandom normal) {
data.Data = (int)Math.Round(normal.NextDouble());
}
private bool IsIntegerConstrained(ConstrainedDoubleData data) {
foreach (IConstraint constraint in data.Constraints) {
if (constraint is IsIntegerConstraint) {
return true;
}
}
return false;
}
}
}