#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using HeuristicLab.Core;
using System.Xml;
using System.Diagnostics;
using HeuristicLab.DataAnalysis;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.GP.StructureIdentification {
///
/// Base class for tree evaluators
///
public abstract class TreeEvaluatorBase : ItemBase, ITreeEvaluator {
protected const double EPSILON = 1.0e-7;
[Storable]
protected double estimatedValueMax;
[Storable]
protected double estimatedValueMin;
[Storable]
protected Dataset dataset;
protected class Instr {
public double d_arg0;
public short i_arg0;
public short i_arg1;
public byte arity;
public byte symbol;
public IFunction function;
}
protected Instr[] codeArr;
protected int PC;
protected int sampleIndex;
public void ResetEvaluator(Dataset dataset, int targetVariable, int start, int end, double punishmentFactor) {
this.dataset = dataset;
double maximumPunishment = punishmentFactor * dataset.GetRange(targetVariable, start, end);
// get the mean of the values of the target variable to determine the max and min bounds of the estimated value
double targetMean = dataset.GetMean(targetVariable, start, end);
estimatedValueMin = targetMean - maximumPunishment;
estimatedValueMax = targetMean + maximumPunishment;
}
public void PrepareForEvaluation(IFunctionTree functionTree) {
BakedFunctionTree bakedTree = functionTree as BakedFunctionTree;
if (bakedTree == null) throw new ArgumentException("TreeEvaluators can only evaluate BakedFunctionTrees");
List linearRepresentation = bakedTree.LinearRepresentation;
codeArr = new Instr[linearRepresentation.Count];
int i = 0;
foreach (LightWeightFunction f in linearRepresentation) {
codeArr[i++] = TranslateToInstr(f);
}
}
private Instr TranslateToInstr(LightWeightFunction f) {
Instr instr = new Instr();
instr.arity = f.arity;
instr.symbol = EvaluatorSymbolTable.MapFunction(f.functionType);
switch (instr.symbol) {
case EvaluatorSymbolTable.DIFFERENTIAL:
case EvaluatorSymbolTable.VARIABLE: {
instr.i_arg0 = (short)f.data[0]; // var
instr.d_arg0 = f.data[1]; // weight
instr.i_arg1 = (short)f.data[2]; // sample-offset
break;
}
case EvaluatorSymbolTable.CONSTANT: {
instr.d_arg0 = f.data[0]; // value
break;
}
case EvaluatorSymbolTable.UNKNOWN: {
instr.function = f.functionType;
break;
}
}
return instr;
}
public double Evaluate(int sampleIndex) {
PC = 0;
this.sampleIndex = sampleIndex;
double estimated = EvaluateBakedCode();
if (double.IsNaN(estimated) || double.IsInfinity(estimated)) {
estimated = estimatedValueMax;
} else if (estimated > estimatedValueMax) {
estimated = estimatedValueMax;
} else if (estimated < estimatedValueMin) {
estimated = estimatedValueMin;
}
return estimated;
}
// skips a whole branch
protected void SkipBakedCode() {
int i = 1;
while (i > 0) {
i += codeArr[PC++].arity;
i--;
}
}
protected abstract double EvaluateBakedCode();
public override object Clone(IDictionary clonedObjects) {
TreeEvaluatorBase clone = (TreeEvaluatorBase)base.Clone(clonedObjects);
if (!clonedObjects.ContainsKey(dataset.Guid)) {
clone.dataset = (Dataset)dataset.Clone(clonedObjects);
} else {
clone.dataset = (Dataset)clonedObjects[dataset.Guid];
}
clone.estimatedValueMax = estimatedValueMax;
clone.estimatedValueMin = estimatedValueMin;
return clone;
}
}
}